Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).
Balzani, V., Credi, A., Raymo, F. & Stoddart, J. Synthetic molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).
Feringa, B. L., van Delden, R. A., Koumura, N. & Geertsema, E. M. Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2000).
Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Past switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).
Shirai, Y., Osgood, A. J., Zhao, Y., Kelly, Ok. F. & Tour, J. M. Directional management in thermally pushed single-molecule nanocars. Nano Lett. 5, 2330–2334 (2005).
Kudernac, T. et al. Electrically pushed directional movement of a four-wheeled molecule on a metallic floor. Nature 479, 208–211 (2011).
Samudra, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).
Balazs, A. C., Fischer, P. & Sen, A. Clever nano/micromotors: utilizing free vitality to manufacture organized techniques pushed removed from equilibrium. Acc. Chem. Res. 51, 2979 (2018).
Karshalev, E., Esteban-Fernandez de Avila, B. & Wang, J. Micromotors for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018).
Fernández‐Medina, M., Ramos‐Docampo, M. A., Hovorka, O., Salgueiriño, V. & Städler, B. Current advances in nano‐ and micromotors. Adv. Funct. Mater. 30, 1908283 (2020).
Walther, A. Viewpoint: From attentive to adaptive and interactive supplies and supplies techniques: a roadmap. Adv. Mater. 32, 1905111 (2019).
Cafferty, B. J. et al. Robustness, entrainment, and hybridization in dissipative molecular networks, and the origin of life. J. Am. Chem. Soc. 141, 8289–8295 (2019).
Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically related natural reactions. Nature 537, 656–660 (2016).
Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complicated and dynamically altering environments. Nat. Rev. Microbiol. 17, 371–382 (2019).
Shum, H. & Balazs, A. C. Artificial quorum sensing in mannequin microcapsule colonies. Proc. Natl Acad. Sci. USA 114, 8475–8480 (2017).
Kondepudi, D. & Prigogine, I. Fashionable Thermodynamics: from Warmth Engines to Dissipative Constructions (Wiley, 2014).
Turing, A. M. The chemical foundation of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952).
Eckert, Ok., Bestehorn, M. & Thess, A. Sq. cells in surface-tension-driven Bénard convection: experiment and concept. J. Fluid Mech. 356, 155–197 (1998).
Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental fashions of primitive mobile compartments: encapsulation, development, and division. Science 302, 618–622 (2003).
Chiu, D. T. et al. Chemical transformations in particular person ultrasmall biomimetic containers. Science 283, 1892–1895 (1999).
Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of mobile processes. Science 310, 1152–1158 (2005).
Balazs, A., C. et al. Designing Biomimetic, Dissipative Materials Techniques (US Division of Vitality Workplace of Scientific and Technical Info, 2016).
Eder, M., Amini, S. & Fratzl, P. Organic composites—complicated constructions for purposeful variety. Science 362, 543–547 (2018).
Oxman, N. Materials-Primarily based Design Computation. PhD thesis, Massachusetts Institute of Know-how (2010).
Costa, J., Bader, C., Sharma, S., Xu, J. & Oxman, N. Spinning easy and striated: built-in design and digital fabrication of bio-homeomorphic constructions throughout scales. In Proc. IASS Annual Symposia, IASS 2018 Boston Symposium: Reimagining Materials and Design (Worldwide Affiliation for Shell and Spatial Constructions (IASS), 2018).
Rus, D. & Tolley, M. T. Design, fabrication and management of soppy robots. Nature 521, 467–475 (2015).
Trudy, R. L. Designing tender robots as robotic supplies. Acc. Mater. Res. 2, 854–857 (2021).
Yasa, O. et al. An summary of soppy robotics. Annu. Rev. Management Robotic. Auton. Syst. 6, 1–29 (2023).
Roy, D., Cambre, J. N. & Sumerlin, B. S. Future views and up to date advances in stimuli-responsive supplies. Prog. Polym. Sci. 35, 278–301 (2010).
McCracken, J. M., Donovan, B. R. & White, T. J. Supplies as machines. Adv. Mater. 32, 1906564 (2020).
Liu, X. et al. Current advances in stimuli‐responsive form‐morphing hydrogels. Adv. Funct. Mater. 32, 2203323 (2022).
Stuart, M. A. C. et al. Rising purposes of stimuli-responsive polymer supplies. Nat. Mater. 9, 101–113 (2010).
Liu, J., Gao, Y., Lee, Y.-J. & Yang, S. Responsive and foldable tender supplies. Traits Chem. 2, 107–122 (2020).
Kang, M. Elegant Goals of Residing Machines: the Automaton within the European Creativeness (Harvard College Press, 2011).
Yoshida, R. & Ueki, T. Evolution of self-oscillating polymer gels as autonomous polymer techniques. NPG Asia Mater. 6, e107 (2014).
van Roekel, H. W. H. et al. Programmable chemical response networks: emulating regulatory features in residing cells utilizing a bottom-up strategy. Chem. Soc. Rev. 44, 7465–7483 (2015).
Semenov, S. N. et al. Rational design of purposeful and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).
Wong, A. S. Y. & Huck, W. T. S. Grip on complexity in chemical response networks. Beilstein J. Org. Chem. 13, 1486–1497 (2017).
Fusi, G., Del Giudice, D., Skarsetz, O., Di Stefano, S. & Walther, A. Autonomous tender robots empowered by chemical response networks. Adv. Mater. 35, 2209870 (2023).
Grzybowski, B. & Huck, W. The nanotechnology of life-inspired techniques. Nat. Nanotechnol. 11, 585–592 (2016).
Baytekin, B., Cezan, S. D., Baytekin, H. T. & Grzybowski, B. A. Synthetic heliotropism and nyctinasty primarily based on optomechanical suggestions and no electronics. Comfortable Robotic. 5, 93–98 (2018).
Sharma, C. & Walther, A. Self-regulating colloidal co-assemblies that speed up their very own destruction by way of chemo-structural suggestions. Angew. Chem. Int. Ed. 61, e2022015 (2022).
Morim, D. R. et al. Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with distant interactions. Proc. Natl Acad. Sci. USA 117, 3953–3959 (2020).
Elowitz, M. B. & Leibler, S. An artificial oscillatory community of transcriptional regulators. Nature 403, 335–338 (2000).
Shklyaev, O. E. & Balazs, A. C. Lifelike habits of chemically oscillating cellular capsules. Matter 5, 3464–3484 (2022).
He, X. et al. Creating homeostasis in artificial supplies by way of self-regulating chemo-mechano-chemical techniques with built-in suggestions loops. Nature 487, 214–218 (2012).
Yuan, P. et al. A programmable tender chemomechanical actuator exploiting a catalyzed photochemical water-oxidation response. Comfortable Matter 13, 7312–7317 (2017).
Grinthala, A. & Aizenberg, J. Adaptive all the best way down: constructing responsive supplies from hierarchies of chemomechanical suggestions. Chem. Soc. Rev. 42, 7072–7085 (2013).
Ma, X. et al. Reversed Janus micro/nanomotors with inner chemical engine. ACS Nano 10, 8751–8759 (2016).
Xu, L., Wang, A., Li, X. & Oh, Ok. W. Passive micropumping in microfluidics for point-of-care testing. Biomicrofluidics 14, 031503 (2020).
Yuan, H., Liu, X., Wang, L. & Ma, X. Fundamentals and purposes of enzyme powered micro/nano-motors. Bioact. Mater. 6, 1727–1749 (2021).
Ortiz-Rivera, I., Shum, H., Agrawal, A., Sen, A. & Balazs, A. C. Convective movement reversal in self-powered enzyme micropumps. Proc. Natl Acad. Sci. USA 113, 2585–2590 (2016).
Valdez, L., Shum, H., Ortiz-Rivera, I., Balazs, A. C. & Sen, A. Solutal and thermal buoyancy results in self-powered phosphatase micropumps. Comfortable Matter 13, 2800–2807 (2017).
Shklyaev, O. E., Shum, H., Sen, A. & Balazs, A. C. Harnessing surface-bound enzymatic reactions to prepare microcapsules in answer. Sci. Adv. 2, e1501835 (2016).
Laskar, A., Shklyaev, O. E. & Balazs, A. C. Designing self-propelled, chemically energetic sheets: wrappers, flappers and creepers. Sci. Adv. 4, eaav1745 (2018).
Manna, R. Ok., Shklyaev, O. E., Stone, H. A. & Balazs, A. C. Chemically managed shape-morphing of elastic sheets. Mater. Horiz. 7, 2314–2327 (2020).
Manna, R. Ok., Shklyaev, O. E. & Balazs, A. C. Chemically pushed multimodal locomotion of energetic, versatile sheets. Langmuir 39, 780–789 (2023).
Laskar, A., Manna, R. Ok., Shklyaev, O. E. & Balazs, A. C. Laptop modeling reveals modalities to actuate mutable, energetic matter. Nat. Commun. 13, 2689 (2022).
Mathesh, M., Bhattarai, E. & Yang, W. 2D energetic nanobots primarily based on tender nanoarchitectonics powered by an ultralow gasoline focus. Angew. Chem. Int. Ed. 61, e202113801 (2021).
Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 16, 2025–2043 (2016).
Yang, C., Yu, Y., Wang, X., Wang, Q. & Shang, L. Mobile fluidic-based vascular networks for tissue engineering. Eng. Regen. 2, 171–174 (2021).
Wu, W. et al. Direct-write meeting of biomimetic microvascular networks for environment friendly fluid transport. Comfortable Matter 6, 739–742 (2010).
O’Connor, C., Brady, E., Zheng, Y., Moore, E. & Stevens, Ok. R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 7, 702–716 (2022).
Wehner, M. et al. An built-in design and fabrication technique for completely tender, autonomous robots. Nature 536, 451–455 (2016).
Taylor, J. M. et al. Biomimetic and biologically compliant tender architectures by way of 3D and 4D meeting strategies: a perspective. Adv. Mater. 34, 2108391 (2022).
Truby, R. L. et al. Comfortable somatosensitive actuators by way of embedded 3D printing. Adv. Mater. 30, 1706383 (2018).
Valentine, A. D. et al. Hybrid 3D printing of soppy electronics. Adv. Mater. 29, 1703817 (2017).
Maiti, S., Shklyaev, O. E., Balazs, A. C. & Sen, A. Self-organization of fluids in a multi-enzymatic pump system. Langmuir 35, 3724–3732 (2019).
Qian, S., Wang, X. & Yan, W. Piezoelectric fibers for versatile and wearable electronics. Entrance. Optoelectron. 16, 3 (2023).
Ning, X. et al. Mechanically energetic supplies in three-dimensional mesostructures. Sci. Adv. 4, eaat8313 (2018).
Ni, X. et al. Comfortable shape-programmable surfaces by quick electromagnetic actuation of liquid metallic networks. Nat. Commun. 13, 5576 (2022).
Kim, Y., van den Berg, J. & Crosby, A. J. Autonomous snapping and leaping polymer gels. Nat. Mater. 20, 1695–1701 (2021).
Zhang, H. et al. Suggestions-controlled hydrogels with homeostatic oscillations and dissipative sign transduction. Nat. Nanotechnol. 17, 1303–1310 (2022).
Li, S. et al. Self-regulated non-reciprocal motions in single-material microstructures. Nature 605, 76–83 (2022).
Eckstein, T. F., Vidal-Henriquez, E., Bae, A. J. & Gholami, J. Spatial heterogeneities form the collective habits of signaling amoeboid cells. Sci. Sign. 13, eaaz3975 (2020).
Singer, G., Araki, T. & Weijer, C. J. Oscillatory cAMP cell–cell signalling persists throughout multicellular Dictyostelium growth. Commun. Biol. 2, 139 (2019).
Kim, Y. Ok., Wang, X., Mondkar, P., Bukusoglu, E. & Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 557, 539–544 (2018).
Chen, M. et al. Residing additive manufacturing: transformation of mum or dad gels into diversely functionalized daughter gels made attainable by seen gentle photo-redox catalysis. ACS Cent. Sci. 3, 124–134 (2017).
Singh, A., Kuksenok, O., Johnson, J. A. & Balazs, A. C. Picture-regeneration of severed gel with iniferter-mediated photo-growth. Comfortable Matter 13, 1978–1987 (2017).
Beziau, A. et al. Photoactivated structurally tailor-made and engineered macromolecular (STEM) gels as precursors for supplies with spatially differentiated mechanical properties. Polymer 126, 224–230 (2017).
Cuthbert, J. et al. Transformable supplies: structurally tailor-made and engineered macromolecular (STEM) gels by managed radical polymerization. Macromolecules 51, 3808–3817 (2018).
Xue, L. et al. Mild-regulated development from dynamic swollen substrates for making tough surfaces. Nat. Commun. 11, 963 (2020).
Xiong, X., Wang, S., Xue, L., Wang, H. & Cui, J. Rising technique for postmodifying cross-linked polymers’ cumbersome measurement, form, and mechanical properties. ACS Appl. Mater. Interfaces 14, 8473–8481 (2022).
Chatterjee, R. et al. Controllable development of interpenetrating or random copolymer networks. Comfortable Matter 17, 7177–7187 (2021).
Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels impressed by muscle coaching. Science 363, 504–508 (2019).
Dou, Y., Dhatt-Gauthier, Ok. & Bishop, Ok. J. M. Thermodynamic prices of dynamic perform in energetic tender matter. Curr. Opin. Stable State Mater. Sci. 23, 28–40 (2019).
Chen, L. et al. The vitality movement and mechanical modeling of soppy chemo-mechanical machines. J. Appl. Phys. 124, 165111 (2018).
Zhao, X. Multi-scale multi-mechanism design of powerful hydrogels: constructing dissipation into stretchy networks. Comfortable Matter 10, 672–687 (2014).
Ford, M. J., Ohm, Y., Chin, Ok. & Majidi, C. Composites of purposeful polymers: towards bodily intelligence utilizing versatile and tender supplies. J. Mater. Res. 37, 2–24 (2022).
Bensaude-Vincent, B. Supplies as Machines 101–111 (Boston Research within the Philosophy and Historical past of Science Vol. 274, Springer, 2010).
Sitti, M. Bodily intelligence as a brand new paradigm. Excessive Mech. Lett. 46, 101340 (2021).
Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).
McEvoy, M. A. & Correll, N. Supplies science. Supplies that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).
Bénazet, J.-D. & Zeller, R. Vertebrate limb growth: shifting from classical morphogen gradients to an built-in four-dimensional patterning system. Chilly Spring Harb. Perspect. Biol. 1, 001339 (2009).
Cazimoglu, I., Sales space, M. J. & Bayley, H. A lipid-based droplet processor for parallel chemical alerts. ACS Nano 15, 20214–20224 (2021).
Zhang, J. et al. Mild-powered, fuel-free oscillation, migration, and reversible manipulation of a number of cargo sorts by micromotor swarms. ACS Nano 17, 251–262 (2022).
Manna, R. Ok., Laskar, A., Shklyaev, O. E. & Balazs, A. C. Harnessing the facility of chemically energetic sheets in answer. Nat. Rev. Phys. 4, 125–137 (2022).
Elani, Y., Legislation, R. & Ces, O. Vesicle-based synthetic cells as chemical microreactors with spatially segregated response pathways. Nat. Commun. 5, 5305 (2014).
Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Sample recognition with ‘supplies that compute’. Sci. Adv. 2, E1601114 (2016).
Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Designing self-powered supplies techniques that carry out sample recognition. Chem. Commun. 53, 7692–7706 (2017).
Jing, L., Li, Ok., Yang, H. & Chen, P.-Y. Current advances in integration of 2D supplies with tender matter for multifunctional robotic supplies. Mater. Horiz. 7, 54–70 (2020).
Buckner, T. L., Bilodeau, R. A., Kim, S. Y. & Kramer-Bottiglio, R. Roboticizing cloth by integrating purposeful fibers. Proc. Natl Acad. Sci. USA 17, 25360–25369 (2020).
Hassani, F. A. et al. Good supplies for sensible healthcare—shifting from sensors and actuators to self-sustained nanoenergy nanosystems. Good Mater. 1, 92–124 (2020).
Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).