Thursday, December 7, 2023
HomeNanotechnologyInterlinking spatial dimensions and kinetic processes in dissipative supplies to create artificial...

Interlinking spatial dimensions and kinetic processes in dissipative supplies to create artificial techniques with lifelike performance


  • Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Balzani, V., Credi, A., Raymo, F. & Stoddart, J. Synthetic molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Feringa, B. L., van Delden, R. A., Koumura, N. & Geertsema, E. M. Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Past switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Shirai, Y., Osgood, A. J., Zhao, Y., Kelly, Ok. F. & Tour, J. M. Directional management in thermally pushed single-molecule nanocars. Nano Lett. 5, 2330–2334 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kudernac, T. et al. Electrically pushed directional movement of a four-wheeled molecule on a metallic floor. Nature 479, 208–211 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Samudra, S. et al. Self-powered enzyme micropumps. Nat. Chem. 6, 415–422 (2014).

    Article 

    Google Scholar
     

  • Balazs, A. C., Fischer, P. & Sen, A. Clever nano/micromotors: utilizing free vitality to manufacture organized techniques pushed removed from equilibrium. Acc. Chem. Res. 51, 2979 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Karshalev, E., Esteban-Fernandez de Avila, B. & Wang, J. Micromotors for ‘chemistry-on-the-fly’. J. Am. Chem. Soc. 140, 3810–3820 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fernández‐Medina, M., Ramos‐Docampo, M. A., Hovorka, O., Salgueiriño, V. & Städler, B. Current advances in nano‐ and micromotors. Adv. Funct. Mater. 30, 1908283 (2020).

    Article 

    Google Scholar
     

  • Walther, A. Viewpoint: From attentive to adaptive and interactive supplies and supplies techniques: a roadmap. Adv. Mater. 32, 1905111 (2019).

    Article 

    Google Scholar
     

  • Cafferty, B. J. et al. Robustness, entrainment, and hybridization in dissipative molecular networks, and the origin of life. J. Am. Chem. Soc. 141, 8289–8295 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically related natural reactions. Nature 537, 656–660 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complicated and dynamically altering environments. Nat. Rev. Microbiol. 17, 371–382 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shum, H. & Balazs, A. C. Artificial quorum sensing in mannequin microcapsule colonies. Proc. Natl Acad. Sci. USA 114, 8475–8480 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kondepudi, D. & Prigogine, I. Fashionable Thermodynamics: from Warmth Engines to Dissipative Constructions (Wiley, 2014).

  • Turing, A. M. The chemical foundation of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952).


    Google Scholar
     

  • Eckert, Ok., Bestehorn, M. & Thess, A. Sq. cells in surface-tension-driven Bénard convection: experiment and concept. J. Fluid Mech. 356, 155–197 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental fashions of primitive mobile compartments: encapsulation, development, and division. Science 302, 618–622 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Chiu, D. T. et al. Chemical transformations in particular person ultrasmall biomimetic containers. Science 283, 1892–1895 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic cycle: temporal compartmentalization of mobile processes. Science 310, 1152–1158 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Balazs, A., C. et al. Designing Biomimetic, Dissipative Materials Techniques (US Division of Vitality Workplace of Scientific and Technical Info, 2016).

  • Eder, M., Amini, S. & Fratzl, P. Organic composites—complicated constructions for purposeful variety. Science 362, 543–547 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Oxman, N. Materials-Primarily based Design Computation. PhD thesis, Massachusetts Institute of Know-how (2010).

  • Costa, J., Bader, C., Sharma, S., Xu, J. & Oxman, N. Spinning easy and striated: built-in design and digital fabrication of bio-homeomorphic constructions throughout scales. In Proc. IASS Annual Symposia, IASS 2018 Boston Symposium: Reimagining Materials and Design (Worldwide Affiliation for Shell and Spatial Constructions (IASS), 2018).

  • Rus, D. & Tolley, M. T. Design, fabrication and management of soppy robots. Nature 521, 467–475 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Trudy, R. L. Designing tender robots as robotic supplies. Acc. Mater. Res. 2, 854–857 (2021).

    Article 

    Google Scholar
     

  • Yasa, O. et al. An summary of soppy robotics. Annu. Rev. Management Robotic. Auton. Syst. 6, 1–29 (2023).

    Article 

    Google Scholar
     

  • Roy, D., Cambre, J. N. & Sumerlin, B. S. Future views and up to date advances in stimuli-responsive supplies. Prog. Polym. Sci. 35, 278–301 (2010).

    Article 
    CAS 

    Google Scholar
     

  • McCracken, J. M., Donovan, B. R. & White, T. J. Supplies as machines. Adv. Mater. 32, 1906564 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Current advances in stimuli‐responsive form‐morphing hydrogels. Adv. Funct. Mater. 32, 2203323 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stuart, M. A. C. et al. Rising purposes of stimuli-responsive polymer supplies. Nat. Mater. 9, 101–113 (2010).

    Article 

    Google Scholar
     

  • Liu, J., Gao, Y., Lee, Y.-J. & Yang, S. Responsive and foldable tender supplies. Traits Chem. 2, 107–122 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kang, M. Elegant Goals of Residing Machines: the Automaton within the European Creativeness (Harvard College Press, 2011).

  • Yoshida, R. & Ueki, T. Evolution of self-oscillating polymer gels as autonomous polymer techniques. NPG Asia Mater. 6, e107 (2014).

    Article 
    CAS 

    Google Scholar
     

  • van Roekel, H. W. H. et al. Programmable chemical response networks: emulating regulatory features in residing cells utilizing a bottom-up strategy. Chem. Soc. Rev. 44, 7465–7483 (2015).

    Article 

    Google Scholar
     

  • Semenov, S. N. et al. Rational design of purposeful and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wong, A. S. Y. & Huck, W. T. S. Grip on complexity in chemical response networks. Beilstein J. Org. Chem. 13, 1486–1497 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Fusi, G., Del Giudice, D., Skarsetz, O., Di Stefano, S. & Walther, A. Autonomous tender robots empowered by chemical response networks. Adv. Mater. 35, 2209870 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Grzybowski, B. & Huck, W. The nanotechnology of life-inspired techniques. Nat. Nanotechnol. 11, 585–592 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Baytekin, B., Cezan, S. D., Baytekin, H. T. & Grzybowski, B. A. Synthetic heliotropism and nyctinasty primarily based on optomechanical suggestions and no electronics. Comfortable Robotic. 5, 93–98 (2018).

    Article 

    Google Scholar
     

  • Sharma, C. & Walther, A. Self-regulating colloidal co-assemblies that speed up their very own destruction by way of chemo-structural suggestions. Angew. Chem. Int. Ed. 61, e2022015 (2022).

    Article 

    Google Scholar
     

  • Morim, D. R. et al. Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with distant interactions. Proc. Natl Acad. Sci. USA 117, 3953–3959 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Elowitz, M. B. & Leibler, S. An artificial oscillatory community of transcriptional regulators. Nature 403, 335–338 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Shklyaev, O. E. & Balazs, A. C. Lifelike habits of chemically oscillating cellular capsules. Matter 5, 3464–3484 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, X. et al. Creating homeostasis in artificial supplies by way of self-regulating chemo-mechano-chemical techniques with built-in suggestions loops. Nature 487, 214–218 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, P. et al. A programmable tender chemomechanical actuator exploiting a catalyzed photochemical water-oxidation response. Comfortable Matter 13, 7312–7317 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grinthala, A. & Aizenberg, J. Adaptive all the best way down: constructing responsive supplies from hierarchies of chemomechanical suggestions. Chem. Soc. Rev. 42, 7072–7085 (2013).

    Article 

    Google Scholar
     

  • Ma, X. et al. Reversed Janus micro/nanomotors with inner chemical engine. ACS Nano 10, 8751–8759 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L., Wang, A., Li, X. & Oh, Ok. W. Passive micropumping in microfluidics for point-of-care testing. Biomicrofluidics 14, 031503 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, H., Liu, X., Wang, L. & Ma, X. Fundamentals and purposes of enzyme powered micro/nano-motors. Bioact. Mater. 6, 1727–1749 (2021).

    CAS 

    Google Scholar
     

  • Ortiz-Rivera, I., Shum, H., Agrawal, A., Sen, A. & Balazs, A. C. Convective movement reversal in self-powered enzyme micropumps. Proc. Natl Acad. Sci. USA 113, 2585–2590 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Valdez, L., Shum, H., Ortiz-Rivera, I., Balazs, A. C. & Sen, A. Solutal and thermal buoyancy results in self-powered phosphatase micropumps. Comfortable Matter 13, 2800–2807 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shklyaev, O. E., Shum, H., Sen, A. & Balazs, A. C. Harnessing surface-bound enzymatic reactions to prepare microcapsules in answer. Sci. Adv. 2, e1501835 (2016).

    Article 

    Google Scholar
     

  • Laskar, A., Shklyaev, O. E. & Balazs, A. C. Designing self-propelled, chemically energetic sheets: wrappers, flappers and creepers. Sci. Adv. 4, eaav1745 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Manna, R. Ok., Shklyaev, O. E., Stone, H. A. & Balazs, A. C. Chemically managed shape-morphing of elastic sheets. Mater. Horiz. 7, 2314–2327 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Manna, R. Ok., Shklyaev, O. E. & Balazs, A. C. Chemically pushed multimodal locomotion of energetic, versatile sheets. Langmuir 39, 780–789 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Laskar, A., Manna, R. Ok., Shklyaev, O. E. & Balazs, A. C. Laptop modeling reveals modalities to actuate mutable, energetic matter. Nat. Commun. 13, 2689 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mathesh, M., Bhattarai, E. & Yang, W. 2D energetic nanobots primarily based on tender nanoarchitectonics powered by an ultralow gasoline focus. Angew. Chem. Int. Ed. 61, e202113801 (2021).

    Article 

    Google Scholar
     

  • Kinstlinger, I. S. & Miller, J. S. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip 16, 2025–2043 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C., Yu, Y., Wang, X., Wang, Q. & Shang, L. Mobile fluidic-based vascular networks for tissue engineering. Eng. Regen. 2, 171–174 (2021).


    Google Scholar
     

  • Wu, W. et al. Direct-write meeting of biomimetic microvascular networks for environment friendly fluid transport. Comfortable Matter 6, 739–742 (2010).

    Article 
    CAS 

    Google Scholar
     

  • O’Connor, C., Brady, E., Zheng, Y., Moore, E. & Stevens, Ok. R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 7, 702–716 (2022).

    Article 

    Google Scholar
     

  • Wehner, M. et al. An built-in design and fabrication technique for completely tender, autonomous robots. Nature 536, 451–455 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, J. M. et al. Biomimetic and biologically compliant tender architectures by way of 3D and 4D meeting strategies: a perspective. Adv. Mater. 34, 2108391 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Truby, R. L. et al. Comfortable somatosensitive actuators by way of embedded 3D printing. Adv. Mater. 30, 1706383 (2018).

    Article 

    Google Scholar
     

  • Valentine, A. D. et al. Hybrid 3D printing of soppy electronics. Adv. Mater. 29, 1703817 (2017).

    Article 

    Google Scholar
     

  • Maiti, S., Shklyaev, O. E., Balazs, A. C. & Sen, A. Self-organization of fluids in a multi-enzymatic pump system. Langmuir 35, 3724–3732 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qian, S., Wang, X. & Yan, W. Piezoelectric fibers for versatile and wearable electronics. Entrance. Optoelectron. 16, 3 (2023).

    Article 

    Google Scholar
     

  • Ning, X. et al. Mechanically energetic supplies in three-dimensional mesostructures. Sci. Adv. 4, eaat8313 (2018).

    Article 

    Google Scholar
     

  • Ni, X. et al. Comfortable shape-programmable surfaces by quick electromagnetic actuation of liquid metallic networks. Nat. Commun. 13, 5576 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y., van den Berg, J. & Crosby, A. J. Autonomous snapping and leaping polymer gels. Nat. Mater. 20, 1695–1701 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Suggestions-controlled hydrogels with homeostatic oscillations and dissipative sign transduction. Nat. Nanotechnol. 17, 1303–1310 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Self-regulated non-reciprocal motions in single-material microstructures. Nature 605, 76–83 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Eckstein, T. F., Vidal-Henriquez, E., Bae, A. J. & Gholami, J. Spatial heterogeneities form the collective habits of signaling amoeboid cells. Sci. Sign. 13, eaaz3975 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Singer, G., Araki, T. & Weijer, C. J. Oscillatory cAMP cell–cell signalling persists throughout multicellular Dictyostelium growth. Commun. Biol. 2, 139 (2019).

    Article 

    Google Scholar
     

  • Kim, Y. Ok., Wang, X., Mondkar, P., Bukusoglu, E. & Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 557, 539–544 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Residing additive manufacturing: transformation of mum or dad gels into diversely functionalized daughter gels made attainable by seen gentle photo-redox catalysis. ACS Cent. Sci. 3, 124–134 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Singh, A., Kuksenok, O., Johnson, J. A. & Balazs, A. C. Picture-regeneration of severed gel with iniferter-mediated photo-growth. Comfortable Matter 13, 1978–1987 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Beziau, A. et al. Photoactivated structurally tailor-made and engineered macromolecular (STEM) gels as precursors for supplies with spatially differentiated mechanical properties. Polymer 126, 224–230 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cuthbert, J. et al. Transformable supplies: structurally tailor-made and engineered macromolecular (STEM) gels by managed radical polymerization. Macromolecules 51, 3808–3817 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xue, L. et al. Mild-regulated development from dynamic swollen substrates for making tough surfaces. Nat. Commun. 11, 963 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, X., Wang, S., Xue, L., Wang, H. & Cui, J. Rising technique for postmodifying cross-linked polymers’ cumbersome measurement, form, and mechanical properties. ACS Appl. Mater. Interfaces 14, 8473–8481 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chatterjee, R. et al. Controllable development of interpenetrating or random copolymer networks. Comfortable Matter 17, 7177–7187 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels impressed by muscle coaching. Science 363, 504–508 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dou, Y., Dhatt-Gauthier, Ok. & Bishop, Ok. J. M. Thermodynamic prices of dynamic perform in energetic tender matter. Curr. Opin. Stable State Mater. Sci. 23, 28–40 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. The vitality movement and mechanical modeling of soppy chemo-mechanical machines. J. Appl. Phys. 124, 165111 (2018).

    Article 

    Google Scholar
     

  • Zhao, X. Multi-scale multi-mechanism design of powerful hydrogels: constructing dissipation into stretchy networks. Comfortable Matter 10, 672–687 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ford, M. J., Ohm, Y., Chin, Ok. & Majidi, C. Composites of purposeful polymers: towards bodily intelligence utilizing versatile and tender supplies. J. Mater. Res. 37, 2–24 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bensaude-Vincent, B. Supplies as Machines 101–111 (Boston Research within the Philosophy and Historical past of Science Vol. 274, Springer, 2010).

  • Sitti, M. Bodily intelligence as a brand new paradigm. Excessive Mech. Lett. 46, 101340 (2021).

    Article 

    Google Scholar
     

  • Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McEvoy, M. A. & Correll, N. Supplies science. Supplies that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bénazet, J.-D. & Zeller, R. Vertebrate limb growth: shifting from classical morphogen gradients to an built-in four-dimensional patterning system. Chilly Spring Harb. Perspect. Biol. 1, 001339 (2009).

    Article 

    Google Scholar
     

  • Cazimoglu, I., Sales space, M. J. & Bayley, H. A lipid-based droplet processor for parallel chemical alerts. ACS Nano 15, 20214–20224 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Mild-powered, fuel-free oscillation, migration, and reversible manipulation of a number of cargo sorts by micromotor swarms. ACS Nano 17, 251–262 (2022).

    Article 

    Google Scholar
     

  • Manna, R. Ok., Laskar, A., Shklyaev, O. E. & Balazs, A. C. Harnessing the facility of chemically energetic sheets in answer. Nat. Rev. Phys. 4, 125–137 (2022).

    Article 

    Google Scholar
     

  • Elani, Y., Legislation, R. & Ces, O. Vesicle-based synthetic cells as chemical microreactors with spatially segregated response pathways. Nat. Commun. 5, 5305 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Sample recognition with ‘supplies that compute’. Sci. Adv. 2, E1601114 (2016).

    Article 

    Google Scholar
     

  • Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Designing self-powered supplies techniques that carry out sample recognition. Chem. Commun. 53, 7692–7706 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jing, L., Li, Ok., Yang, H. & Chen, P.-Y. Current advances in integration of 2D supplies with tender matter for multifunctional robotic supplies. Mater. Horiz. 7, 54–70 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buckner, T. L., Bilodeau, R. A., Kim, S. Y. & Kramer-Bottiglio, R. Roboticizing cloth by integrating purposeful fibers. Proc. Natl Acad. Sci. USA 17, 25360–25369 (2020).

    Article 

    Google Scholar
     

  • Hassani, F. A. et al. Good supplies for sensible healthcare—shifting from sensors and actuators to self-sustained nanoenergy nanosystems. Good Mater. 1, 92–124 (2020).

    Article 

    Google Scholar
     

  • Cui, H. et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science 376, 1287–1293 (2022).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments