Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction by way of the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).
Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).
Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).
Joshi, R. Okay. et al. Exact and ultrafast molecular sieving by way of graphene oxide membranes. Science 343, 752–754 (2014).
Shen, J., Liu, G. P., Han, Y. & Jin, W. Q. Synthetic channels for confined mass transport on the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).
Radha, B. et al. Molecular transport by way of capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).
Suo, L. M. et al. ‘Water-in-salt’ electrolyte permits high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).
Chao, D. L. et al. Roadmap for superior aqueous batteries: from design of supplies to purposes. Sci. Adv. 6, eaba4098 (2020).
Liu, T. C. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 14, 50–56 (2019).
Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Towards secure lithium metallic anode in rechargeable batteries: a evaluation. Chem. Rev. 117, 10403–10473 (2017).
Doyle, D. A. et al. The construction of the potassium channel: molecular foundation of Okay+ conduction and selectivity. Science 280, 69–77 (1998).
Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal construction of a voltage-gated sodium channel. Nature 475, 353–358 (2011).
Zhou, Y. F., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a Okay+ channel–Fab complicated at 2.0 Å decision. Nature 414, 43–48 (2001).
Chen, L. et al. Ion sieving in graphene oxide membranes by way of cationic management of interlayer spacing. Nature 550, 415–418 (2017).
Schoch, R. B., Han, J. Y. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).
Zhu, Z. P., Wang, D. Y., Tian, Y. & Jiang, L. Ion/molecule transportation in nanopores and nanochannels: from crucial rules to various capabilities. J. Am. Chem. Soc. 141, 8658–8669 (2019).
Xue, Y. et al. Atomic-scale ion transistor with ultrahigh diffusivity. Science 372, 501–503 (2021).
Kopfer, D. A. et al. Ion permeation in Okay+ channels happens by direct Coulomb knock-on. Science 346, 352–355 (2014).
Robin, P., Kavokine, N. & Bocquet, L. Modeling of emergent reminiscence and voltage spiking in ionic transport by way of angstrom-scale slits. Science 373, 687–691 (2021).
Kopec, W. et al. Direct knock-on of desolvated ions governs strict ion selectivity in Okay+ channels. Nat. Chem. 10, 813–820 (2018).
Zheng, J. X. et al. Understanding thermodynamic and kinetic contributions in increasing the soundness window of aqueous electrolytes. Chem 4, 2872–2882 (2018).
Giessibl, F. J. The qPlus sensor, a robust core for the atomic power microscope. Rev. Sci. Instrum. 90, 011101 (2019).
Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metallic interfaces. Nat. Mater. 11, 667–674 (2012).
Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical construction of a molecule resolved by atomic power microscopy. Science 325, 1110–1114 (2009).
Peng, J. B. et al. The impact of hydration quantity on the interfacial transport of sodium ions. Nature 557, 701–705 (2018).
Tian, Y. et al. Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metallic surfaces. Science 377, 315–319 (2022).
Peng, J. B. et al. Weakly perturbative imaging of interfacial water with submolecular decision by atomic power microscopy. Nat. Commun. 9, 122 (2018).
Ma, R. Z. et al. Atomic imaging of the sting construction and development of a two-dimensional hexagonal ice. Nature 577, 60–63 (2020).
Shiotari, A. & Sugimoto, Y. Ultrahigh-resolution imaging of water networks by atomic power microscopy. Nat. Commun. 8, 14313 (2017).
Mita, Okay. et al. Conductance selectivity of Na+ throughout the Okay+ channel by way of Na+ trapped in a tortuous trajectory. Proc. Natl Acad. Sci. USA 118, e2017168118 (2021).
Hribar, B., Southall, N. T., Vlachy, V. & Dill, Okay. A. How ions have an effect on the construction of water. J. Am. Chem. Soc. 124, 12302–12311 (2002).
Chandler, D. Interfaces and the driving power of hydrophobic meeting. Nature 437, 640–647 (2005).
Meyer, E. E., Rosenberg, Okay. J. & Israelachvili, J. Current progress in understanding hydrophobic interactions. Proc. Natl Acad. Sci. USA 103, 15739–15746 (2006).
Xu, X. Z. et al. Ultrafast epitaxial development of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).
Ohta, T., Bostwick, A., Seyller, T., Horn, Okay. & Rotenberg, E. Controlling the digital construction of bilayer graphene. Science 313, 951–954 (2006).
Kresse, G. Ab-initio molecular-dynamics for liquid-metals. J. Non-Cryst. Solids 193, 222–229 (1995).
Kresse, G. & Furthmuller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).
Klimes, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density purposeful. J. Phys. Condens. Matter 22, 022201 (2010).
Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals utilized to solids. Phys. Rev. B 83, 195131 (2011).
Neugebauer, J. & Scheffler, M. Adsorbate–substrate and adsorbate–adsorbate interactions of Na and Okay adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).
Makov, G. & Payne, M. C. Periodic boundary-conditions in ab-initio calculations. Phys. Rev. B 51, 4014–4022 (1995).
Henkelman, G., Arnaldsson, A. & Jonsson, H. A quick and sturdy algorithm for Bader decomposition of cost density. Comput. Mater. Sci. 36, 354–360 (2006).
Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized suggestions. Phys. Rev. B 90, 085421 (2014).
Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. The lacking time period in efficient pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).
Joung, I. S. & Cheatham, T. E. Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions utilizing water-model-specific ion parameters. J. Phys. Chem. B 113, 13279–13290 (2009).
Huang, Y. P. et al. SPONGE: a GPU-accelerated molecular dynamics package deal with enhanced sampling and AI-driven algorithms. Chin. J. Chem. 40, 160–168 (2022).
Zhang, Z. J. et al. A unified thermostat scheme for environment friendly configurational sampling for classical/quantum canonical ensembles by way of molecular dynamics. J. Chem. Phys. 147, 034109 (2017).
Miyamoto, S. & Kollman, P. A. SETTLE: an analytical model of the SHAKE and RATTLE algorithm for inflexible water fashions. J. Comput. Chem. 13, 952–962 (1992).
Essmann, U. et al. A easy particle mesh Ewald methodology. J. Chem. Phys. 103, 8577–8593 (1995).