Saturday, December 2, 2023
HomeNanotechnologyOligomeric group of membrane proteins from native membranes at nanoscale spatial and...

Oligomeric group of membrane proteins from native membranes at nanoscale spatial and single-molecule decision


  • Levental, I. & Lyman, E. Regulation of membrane protein construction and performance by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The thriller of membrane group: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18, 361–374 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S., Hoess, P. & Ries, J. Tremendous-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51, 301–326 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Baddeley, D. & Bewersdorf, J. Organic perception from super-resolution microscopy: what we will be taught from localization-based pictures. Annu. Rev. Biochem. 87, 965–989 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jain, A. et al. Probing mobile protein complexes utilizing single-molecule pull-down. Nature 473, 484–488 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chung, J. Okay. et al. Okay-Ras4B stays monomeric on membranes over a variety of floor densities and lipid compositions. Biophys. J. 114, 137–145 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kaliszewski, M. J. et al. Quantifying membrane protein oligomerization with fluorescence cross-correlation spectroscopy. Strategies 140–141, 40–51 (2018).

    Article 

    Google Scholar
     

  • Huang, Y. et al. Molecular foundation for multimerization within the activation of the epidermal development issue receptor. eLife 5, e14107 (2016).

    Article 

    Google Scholar
     

  • Ulbrich, M. H. & Isacoff, E. Y. Subunit counting in membrane-bound proteins. Nat. Strategies 4, 319–321 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Low-Nam, S. T. et al. ErbB1 dimerization is promoted by area co-confinement and stabilized by ligand binding. Nat. Struct. Mol. Biol. 18, 1244–1249 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kusumi, A., Tsunoyama, T. A., Hirosawa, Okay. M., Kasai, R. S. & Fujiwara, T. Okay. Monitoring single molecules at work in dwelling cells. Nat. Chem. Biol. 10, 524–532 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Strategies Primers 1, 39 (2021).

  • Huang, B., Bates, M. & Zhuang, X. Tremendous-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Balzarotti, F. et al. Nanometer decision imaging and monitoring of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Deguchi, T. et al. Direct commentary of motor protein stepping in dwelling cells utilizing MINFLUX. Science 379, 1010–1015 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Panda, A. et al. Direct dedication of oligomeric group of integral membrane proteins and lipids from intact customizable bilayer. Nat. Strategies 20, 891–897 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sydor, A. M., Czymmek, Okay. J., Puchner, E. M. & Mennella, V. Tremendous-resolution microscopy: from single molecules to supramolecular assemblies. Developments Cell Biol. 25, 730–748 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Duncan, A. L. et al. Protein crowding and lipid complexity affect the nanoscale dynamic group of ion channels in cell membranes. Sci. Rep. 7, 16647 (2017).

    Article 

    Google Scholar
     

  • Kiessling, V., Yang, S.-T. & Tamm, L. Okay. Supported lipid bilayers as fashions for learning membrane domains. Curr. Prime. Membr. 75, 1–23 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the floor of dwelling cells. Nat. Cell Biol. 2, 168–172 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Coffman, V. C. & Wu, J.-Q. Counting protein molecules utilizing quantitative fluorescence microscopy. Developments Biochem. Sci. 37, 499–506 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Huang, E. J. & Reichardt, L. F. Trk receptors: roles in neuronal sign transduction. Annu. Rev. Biochem. 72, 609–642 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Waters, A. M. & Der, C. J. KRAS: the vital driver and therapeutic goal for pancreatic most cancers. Chilly Spring Harb. Perspect. Med. 8, a031435 (2018).

    Article 

    Google Scholar
     

  • Hobbs, G. A., Der, C. J. & Rossman, Okay. L. RAS isoforms and mutations in most cancers at a look. J. Cell Sci. 129, 1287–1292 (2016).

    CAS 

    Google Scholar
     

  • Simanshu, D. Okay., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human illness. Cell 170, 17–33 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. Y. & Doudna, J. A. CRISPR expertise: a decade of genome enhancing is barely the start. Science 379, eadd8643 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cho, N. H. et al. OpenCell: endogenous tagging for the cartography of human mobile group. Science 375, eabi6983 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Smith, A. A. A. et al. Lipid nanodiscs by way of ordered copolymers. Chem 6, 2782–2795 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Esmaili, M. & Overduin, M. Membrane biology visualized in nanometer-sized discs shaped by styrene maleic acid polymers. Biochim. Biophys. Acta Biomembr. 1860, 257–263 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Knowles, T. J. et al. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 131, 7484–7485 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of dwell cells. Science 296, 913–916 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Swiecicki, J.-M., Santana, J. T. & Imperiali, B. A strategic method for fluorescence imaging of membrane proteins in a native-like setting. Cell Chem. Biol. 27, 245–251.e3 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural research. Nat. Protoc. 9, 2574–2585 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sniegowski, J. A., Phail, M. E. & Wachter, R. M. Maturation effectivity, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of inexperienced fluorescent protein. Biochem. Biophys. Res. Commun. 332, 657–663 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Constructions of bacterial homologues of SWEET transporters in two distinct conformations. Nature 515, 448–452 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Khademi, S. et al. Mechanism of ammonia transport by Amt/MEP/Rh: construction of AmtB at 1.35 A. Science 305, 1587–1594 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. M. & Nimigean, C. M. Voltage-gated potassium channels: a structural examination of selectivity and gating. Chilly Spring Harb. Perspect. Biol. 8, a029231 (2016).

    Article 

    Google Scholar
     

  • Gupta, Okay. et al. The function of interfacial lipids in stabilizing membrane protein oligomers. Nature 541, 421–424 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nemoto, Y. & De Camilli, P. Recruitment of an alternatively spliced type of synaptojanin 2 to mitochondria by the interplay with the PDZ area of a mitochondrial outer membrane protein. EMBO J. 18, 2991–3006 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. W., Freinkman, E., Wang, T., Birsoy, Okay. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337.e11 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yamashita, A., Singh, S. Okay., Kawate, T., Jin, Y. & Gouaux, E. Crystal construction of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Quantification of epidermal development issue receptor expression degree and binding kinetics on cell surfaces by floor plasmon resonance imaging. Anal. Chem. 87, 9960–9965 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hood, F. E., Sahraoui, Y. M., Jenkins, R. E. & Prior, I. A. Ras protein abundance correlates with Ras isoform mutation patterns in most cancers. Oncogene 42, 1224–1232 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Byrne, P. O., Hristova, Okay. & Leahy, D. J. EGFR types ligand-independent oligomers which can be distinct from the lively state. J. Biol. Chem. 295, 13353–13362 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shen, J. & Maruyama, I. N. Nerve development issue receptor TrkA exists as a preformed, but inactive, dimer in dwelling cells. FEBS Lett. 585, 295–299 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ahmed, F. & Hristova, Okay. Dimerization of the Trk receptors within the plasma membrane: results of their cognate ligands. Biochem. J. 475, 3669–3685 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Franco, M. L. et al. Interplay between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J. Biol. Chem. 297, 100926 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Van, Q. N. et al. RAS nanoclusters: dynamic signaling platforms amenable to therapeutic intervention. Biomolecules 11, 377 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abankwa, D., Gorfe, A. A. & Hancock, J. F. Ras nanoclusters: molecular construction and meeting. Semin. Cell Dev. Biol. 18, 599–607 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Nan, X. et al. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. Proc. Natl Acad. Sci. USA 112, 7996–8001 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ambrogio, C. et al. KRAS dimerization impacts MEK inhibitor sensitivity and oncogenic exercise of mutant KRAS. Cell 172, 857–868.e15 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kessler, D. et al. Drugging an undruggable pocket on KRAS. Proc. Natl Acad. Sci. USA 116, 15823–15829 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tran, T. H. et al. The small molecule BI-2852 induces a nonfunctional dimer of KRAS. Proc. Natl Acad. Sci. USA 117, 3363–3364 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sarkar-Banerjee, S. et al. Spatiotemporal evaluation of Okay-Ras plasma membrane Interactions reveals a number of excessive order homo-oligomeric complexes. J. Am. Chem. Soc. 139, 13466–13475 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Buscail, L., Bournet, B. & Cordelier, P. Function of oncogenic KRAS within the prognosis, prognosis and therapy of pancreatic most cancers. Nat. Rev. Gastroenterol. Hepatol. 17, 153–168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Muzumdar, M. D. et al. Survival of pancreatic most cancers cells missing KRAS operate. Nat. Commun. 8, 1090 (2017).

    Article 

    Google Scholar
     

  • Sligar, S. G. & Denisov, I. G. Nanodiscs: a toolkit for membrane protein science. Protein Sci. 30, 297–315 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Boldog, T., Grimme, S., Li, M., Sligar, S. G. & Hazelbauer, G. L. Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl Acad. Sci. USA 103, 11509–11514 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in most cancers. Mol. Most cancers 17, 58 (2018).

    Article 

    Google Scholar
     

  • Lindhoud, S., Carvalho, V., Pronk, J. W. & Aubin-Tam, M.-E. SMA-SH: modified styrene-maleic acid copolymer for functionalization of lipid nanodiscs. Biomacromolecules 17, 1516–1522 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wooden, E. R. et al. Discovery and in vitro analysis of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg. Med. Chem. Lett. 14, 953–957 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle monitoring. Strategies 115, 80–90 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jaqaman, Okay. et al. Sturdy single-particle monitoring in live-cell time-lapse sequences. Nat. Strategies 5, 695–702 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Karandur, D. et al. Breakage of the oligomeric CaMKII hub by the regulatory phase of the kinase. eLife 9, e57784 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mi, L.-Z. et al. Simultaneous visualization of the extracellular and cytoplasmic domains of the epidermal development issue receptor. Nat. Struct. Mol. Biol. 18, 984–989 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bhattacharyya, M. et al. MATLAB Codes for Native-nanoBleach (1.0.1) (Zenodo, 2023); https://doi.org/10.5281/zenodo.8429321



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments