Friday, December 1, 2023
HomeNanotechnologyUneven conducting route and potential redistribution decide the polarization-dependent conductivity in layered...

Uneven conducting route and potential redistribution decide the polarization-dependent conductivity in layered ferroelectrics


  • Wang, S. et al. Two-dimensional units and integration in the direction of the silicon strains. Nat. Mater. 21, 1225–1239 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and different III2–VI3 van der Waals supplies. Nat. Commun. 8, 14956 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 17, 5508–5513 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Optoelectronic and ionic results on transport in van der Waals steel selenophosphate AgBiP2Se6. Phys. Rev. Appl. 19, 054055 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shang, J. et al. Stacking-dependent interlayer ferroelectric coupling and moiré domains in a twisted AgBiP2Se6 bilayer. J. Phys. Chem. Lett. 13, 2027–2032 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liao, J. et al. Van der Waals ferroelectric semiconductor subject impact transistor for in-memory computing. ACS Nano 17, 6095–6102 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sui, F. et al. Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun. 14, 36 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, M. & Zeng, X. C. Bismuth oxychalcogenides: a brand new class of ferroelectric/ferroelastic supplies with extremely excessive mobility. Nano Lett. 17, 6309–6314 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tan, C. et al. 2D fin field-effect transistors built-in with epitaxial high-ok gate oxide. Nature 616, 66–72 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, W. et al. Electrically switchable polarization in Bi2O2Se ferroelectric semiconductors. Adv. Mater. 35, 2210854 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Two-dimensional ferroelectric channel transistors integrating ultra-fast reminiscence and neural computing. Nat. Commun. 12, 53 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xue, F. et al. Large ferroelectric resistance switching managed by a modulatory terminal for low-power neuromorphic in-memory computing. Adv. Mater. 33, 2008709 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. et al. Nonvolatile memristor based mostly on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2. Sci. China Inf. Sci. 62, 220404 (2019).

    Article 

    Google Scholar
     

  • Si, M. et al. A novel scalable energy-efficient synaptic system: crossbar ferroelectric semiconductor junction. In IEEE Worldwide Electron Gadgets Assembly (IEDM), 6.6.1–6.6.4 (2019).

  • Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Sci. Bull. 66, 2288–2296 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv. Funct. Mater. 30, 2004609 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Okay. et al. An optoelectronic synapse based mostly on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, S., Liu, X. & Zhou, P. The street for 2D semiconductors within the silicon age. Adv. Mater. 34, 2106886 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y., Wang, S., Chen, X., Zhang, Z. & Zhou, P. Multioperation mode ferroelectric channel units for reminiscence and computation. Adv. Intell. Syst. 4, 2100198 (2022).

    Article 

    Google Scholar
     

  • Rodriguez, J. R. et al. Electrical subject induced metallic habits in skinny crystals of ferroelectric α-In2Se3. Appl. Phys. Lett. https://doi.org/10.1063/5.0014945 (2020).

  • He, J., Stephenson, G. & Nakhmanson, S. Digital floor compensation of polarization in PbTiO3 movies. J. Appl. Phys. 112, 054112 (2012).

    Article 

    Google Scholar
     

  • Fredrickson, Okay. D. & Demkov, A. A. Switchable conductivity on the ferroelectric interface: nonpolar oxides. Phys. Rev. B 91, 115126 (2015).

    Article 

    Google Scholar
     

  • Quindeau, A. et al. Origin of tunnel electroresistance impact in PbTiO3-based multiferroic tunnel junctions. Phys. Rev. B 92, 035130 (2015).

    Article 

    Google Scholar
     

  • Radaelli, G. et al. Massive room-temperature electroresistance in dual-modulated ferroelectric tunnel boundaries. Adv. Mater. 27, 2602–2607 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X., Tsymbal, E. Y. & Rabe, Okay. M. Polarization-controlled modulation doping of a ferroelectric from first ideas. Phys. Rev. B 97, 094107 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Statement of tunable band hole and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X. & Yang, L. Stark impact of doped two-dimensional transition steel dichalcogenides. Appl. Phys. Lett. 111, 193104 (2017).

    Article 

    Google Scholar
     

  • Li, C. et al. Band construction, ferroelectric instability, and spin–orbital coupling impact of bilayer α-In2Se3. J. Appl. Phys. 128, 234106 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, W. Y. et al. Graphene–ferroelectric metadevices for nonvolatile reminiscence and reconfigurable logic-gate operations. Nat. Commun. 7, 10429 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shuai, W.-J., Wang, R. & Zhao, J.-Z. Ferroelectric section transition pushed by anharmonic lattice mode coupling in two-dimensional monolayer In2Se3. Phys. Rev. B 107, 155427 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Excessive tunnelling electroresistance in a ferroelectric van der Waals heterojunction through big barrier top modulation. Nat. Electron. 3, 466–472 (2020).

    Article 

    Google Scholar
     

  • Su, Y. et al. Van der Waals multiferroic tunnel junctions. Nano Lett. 21, 175–181 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ding, J., Shao, D.-F., Li, M., Wen, L.-W. & Tsymbal, E. Y. Two-dimensional antiferroelectric tunnel junction. Phys. Rev. Lett. 126, 057601 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lv, B. et al. Layer-dependent ferroelectricity in 2H-stacked few-layer α-In2Se3. Mater. Horiz. 8, 1472–1480 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wan, S. et al. Room-temperature ferroelectricity and a switchable diode impact in two-dimensional α-In2Se3 skinny layers. Nanoscale 10, 14885–14892 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Smidstrup, S. et al. QuantumATK: an built-in platform of digital and atomic-scale modelling instruments. J. Phys. Condens. Matter 32, 015901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kleinman, L. & Bylander, D. M. Efficacious type for mannequin pseudopotentials. Phys. Rev. Lett. 48, 1425–1428 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Particular level for Brillouin-zone integrations. Phys. Lett. B 13, 5188–5192 (1976).


    Google Scholar
     

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based mostly on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Ferreira, L. G., Marques, M. & Teles, L. Okay. Slater half-occupation method revisited: the LDA-1/2 and GGA-1/2 approaches for atomic ionization energies and band gaps in semiconductors. AIP Adv. 1, 032119 (2011).

    Article 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density purposeful dispersion correction (DFT-D) for the 94 parts H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density purposeful principle. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Datta, S. (ed.) Cambridge Research in Semiconductor Physics and Microelectronic Engineering (Cambridge Univ. Press, 1995).

  • Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition steel dichalcogenides: from monolayer to bulk. NPK 2D Mater. Appl. 2, 6 (2018).

    Article 

    Google Scholar
     

  • Wang, L., Pu, Y., Soh, A. Okay., Shi, Y. & Liu, S. Layers dependent dielectric properties of two dimensional hexagonal boron nitride nanosheets. AIP Adv. 6, 125126 (2016).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments