Thursday, December 7, 2023
HomeNanotechnologySingle-molecule power stability of the SARS-CoV-2–ACE2 interface in variants-of-concern

Single-molecule power stability of the SARS-CoV-2–ACE2 interface in variants-of-concern


  • Laffeber, C., Koning, Okay. D., Kanaar, R. & Lebbink, J. H. G. Experimental proof for enhanced receptor binding by quickly spreading SARS-CoV-2 variants. J. Mol. Biol. 433, 167058–167058 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Barton, M. I. et al. Results of widespread mutations within the SARS-CoV-2 spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife 10, e70658 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Majumdar, P. & Niyogi, S. SARS-CoV-2 mutations: the organic trackway in direction of viral health. Epidemiol. Infect. 149, E110 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bayarri-Olmos, R. et al. The alpha/B.1.1.7 SARS-CoV-2 variant displays considerably increased affinity for ACE-2 and requires decrease inoculation doses to trigger illness in K18-hACE2 mice. eLife 10, e70002 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hill, D. B. et al. Pressure technology and dynamics of particular person cilia beneath exterior loading. Biophys. J. 98, 57–66 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wu, C.-T. et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 186, 112–130.e20 (2023).

  • Milles, L. F., Schulten, Okay., Gaub, H. E. & Bernardi, R. C. Molecular mechanism of maximum mechanostability in a pathogen adhesin. Science 359, 1527–1533 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Alsteens, D. et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12, 177–183 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Koehler, M., Delguste, M., Sieben, C., Gillet, L. & Alsteens, D. Preliminary step of virus entry: virion binding to cell-surface glycans. Annu. Rev. Virol. 7, 143–165 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sokurenko, E. V., Vogel, V. & Thomas, W. E. Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, however…widespread? Cell Host Microbe 4, 314–323 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Tian, F. et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife 10, e69091 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Bin, et al. S373P mutation stabilizes the receptor-binding area of the spike protein in omicron and promotes binding. JACS Au https://doi.org/10.1021/jacsau.3c00142 (2023).

  • Koehler, M. et al. Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nat. Commun. 12, 6977 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. et al. Molecular interplay and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 11, 4541 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cao, W. et al. Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interplay. Biophys. J. 120, 1011–1019 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Pathogen-host adhesion between SARS-CoV-2 spike proteins from totally different variants and human ACE2 studied at single-molecule and single-cell ranges. Rising Microbes Infect. 11, 2658–2669 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, R. et al. Pressure-tuned avidity of spike variant-ACE2 interactions considered on the single-molecule stage. Nat. Commun. 13, 7926 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bauer, M. S. et al. A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proc. Natl Acad. Sci. USA 119, e2114397119 (2022).

  • Bauer, M. S. et al. A tethered ligand assay to probe the SARS-CoV-2 ACE2 interplay beneath fixed power. Preprint at biorxiv https://doi.org/10.1101/2020.09.27.315796 (2020).

  • Löf, A. et al. Multiplexed protein power spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand issue. Proc. Natl Acad. Sci. USA 116, 18798–18807 (2019).

  • Lansdorp, B. M. & Saleh, O. A. Energy spectrum and Allan variance strategies for calibrating single-molecule video-tracking devices. Rev. Sci. Instrum. 83, 025115 (2012).

    Article 

    Google Scholar
     

  • Velthuis, A. J. W. T., Kerssemakers, J. W. J., Lipfert, J. & Dekker, N. H. Quantitative tips for power calibration by means of spectral evaluation of magnetic tweezers knowledge. Biophys. J. 99, 1292–1302 (2010).

    Article 

    Google Scholar
     

  • Neuman, Okay. C. & Nagy, A. Single-molecule power spectroscopy: optical tweezers, magnetic tweezers and atomic power microscopy. Nat. Strategies 5, 491–505 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lipfert, J., Hao, X. & Dekker, N. H. Quantitative modeling and optimization of magnetic tweezers. Biophys. J. 96, 5040–5049 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ott, W. et al. Elastin-like polypeptide linkers for single-molecule power spectroscopy. ACS Nano 11, 6346–6354 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J., Zhang, C. Z., Zhang, X. & Springer, T. A. A mechanically stabilized receptor-ligand flex-bond necessary within the vasculature. Nature 466, 992–995 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shrestha, P. et al. Single-molecule mechanical fingerprinting with DNA nanoswitch calipers. Nat. Nanotechnol. 16, 1362–1370 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, D., Ward, A., Halvorsen, Okay. & Wong, W. P. Multiplexed single-molecule power spectroscopy utilizing a centrifuge. Nat. Commun. 7, 11026 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kilchherr, F. et al. Single-molecule dissection of stacking forces in DNA. Science 353, aaf5508 (2016).

    Article 

    Google Scholar
     

  • Le, S., Yu, M. & Yan, J. Direct single-molecule quantification reveals unexpectedly excessive mechanical stability of vinculin—talin/α-catenin linkages. Sci. Adv. 5, eaav2720 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Halvorsen, Okay., Schaak, D. & Wong, W. P. Nanoengineering a single-molecule mechanical change utilizing DNA self-assembly. Nanotechnology 22, 494005 (2011).

    Article 

    Google Scholar
     

  • Kostrz, D. et al. A modular DNA scaffold to review protein-protein interactions at single-molecule decision. Nat. Nanotechnol. 14, 988–993 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gong, S. Y. et al. Contribution of single mutations to chose SARS-CoV-2 rising variants spike antigenicity. Virology 563, 134–145 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rajah, M. M. et al. SARS‐CoV‐2 Alpha, Beta, and Delta variants show enhanced spike‐mediated syncytia formation. EMBO J. 40, e108944 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gobeil, S. M. C. et al. Impact of pure mutations of SARS-CoV-2 on spike construction, conformation, and antigenicity. Science 373, eabi6226 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ren, W. et al. Characterization of SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by cell entry and immune evasion. mBio 13, e00099–00022 (2022).

    Article 

    Google Scholar
     

  • McCallum, M. et al. Molecular foundation of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science 374, 1621–1626 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Albrecht, C. et al. DNA: a programmable power sensor. Science 301, 367–370 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Gruber, S. et al. Designed anchoring geometries decide lifetimes of biotin–streptavidin bonds beneath fixed load and allow ultra-stable coupling. Nanoscale 12, 21131–21137 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Webb, B. & Sali, A. Comparative protein construction modeling utilizing MODELLER. Curr. Protoc. Bioinform 54, 5.6.1–5.6.37 (2016).

    Article 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Melo, M. C. R., Bernardi, R. C., Fuente-Nunez, C. D. L. & Luthey-Schulten, Z. Generalized correlation-based dynamical community evaluation: a brand new high-performance method for figuring out allosteric communications in molecular dynamics trajectories. J. Chem. Phys. 153, 134104 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schoeler, C. et al. Mapping mechanical power propagation by means of biomolecular complexes. Nano Lett. 15, 7370–7376 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lan, J. et al. Construction of the SARS-CoV-2 spike receptor-binding area certain to the ACE2 receptor. Nature 581, 215–220 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. et al. The idea of a extra contagious 501Y.V1 variant of SARS-CoV-2. Cell Res. 31, 720–722 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Han, P. et al. Receptor binding and sophisticated constructions of human ACE2 to spike RBD from Omicron and Delta SARS-CoV-2. Cell 185, 630–640.e610 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dulin, D., Lipfert, J., Moolman, M. C. & Dekker, N. H. Finding out genomic processes on the single-molecule stage: introducing the instruments and purposes. Nat. Rev. Genet. 14, 9–22 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 11727–11734 (2020).

    Article 
    CAS 

    Google Scholar
     

  • V’kovski, P., Kratzel, A., Steiner, S, Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2020).

  • Michaud, W. A., Boland, G. M. & Rabi, S. A. The SARS-CoV-2 spike mutation D614G will increase entry health throughout a variety of ACE2 ranges, instantly outcompetes the wild kind, and is preferentially integrated into trimers. Preprint at bioRxiv https://doi.org/10.1101/2020.08.25.267500 (2020).

  • Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Escalera, A. et al. Mutations in SARS-CoV-2 variants of concern hyperlink to elevated spike cleavage and virus transmission. Cell Host Microbe 30, 373–387.e377 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ulrich, L. et al. Enhanced health of SARS-CoV-2 variant of concern Alpha however not Beta. Nature 602, 307–313 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Buss, L. F. et al. Three-quarters assault fee of SARS-CoV-2 within the Brazilian Amazon throughout a largely unmitigated epidemic. Science 371, 288–292 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Okay. et al. SARS-CoV-2 transmission, persistence of immunity, and estimates of Omicron’s affect in South African inhabitants cohorts. Sci. Transl. Med. 14, eabo7081 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding area reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e1220 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C. et al. The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to different variants. Cell Host Microbe 30, 53–68.e12 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bayarri-Olmos, R. et al. Useful results of receptor-binding area mutations of SARS-CoV-2 B.1.351 and P.1 variants. Entrance. Immunol. 12, 757197 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Elevated immune escape of the brand new SARS-CoV-2 variant of concern Omicron. Cell Mol. Immunol. 19, 293–295 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ju, B. et al. Immune escape by SARS-CoV-2 Omicron variant and structural foundation of its efficient neutralization by a broad neutralizing human antibody VacW-209. Cell Res. 32, 491–494 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Y. et al. SARS-CoV-2 Omicron variant: current progress and future views. Sig. Transduct. Goal Ther. 7, 141 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Planas, D. et al. Appreciable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, B. et al. Viral an infection and transmission in a big, well-traced outbreak attributable to the SARS-CoV-2 Delta variant. Nat. Commun. 13, 460 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Komatsu, T. et al. Molecular cloning, mRNA expression and chromosomal localization of mouse angiotensin-converting enzyme-related carboxypeptidase (mACE2). DNA Sequence 13, 217–220 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Marra, M. A. et al. The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Li, F., Li, W., Farzan, M. & Harrison, S. C. Construction of SARS coronavirus spike receptor-binding area complexed with receptor. Science 309, 1864–1868 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Milles, L. F. & Gaub, H. E. Is mechanical receptor ligand dissociation pushed by unfolding or unbinding? Preprint at bioRxiv https://doi.org/10.1101/593335 (2019).

  • Wu, F. et al. A brand new coronavirus related to human respiratory illness in China. Nature 579, 265–269 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Walker, P. U., Vanderlinden, W. & Lipfert, J. Dynamics and vitality panorama of DNA plectoneme nucleation. Phys. Rev. E 98, 042412 (2018).

    Article 
    CAS 

    Google Scholar
     

  • van Loenhout, M. T., Kerssemakers, J. W., De Vlaminck, I. & Dekker, C. Non-bias-limited monitoring of spherical particles, enabling nanometer decision at low magnification. Biophys. J. 102, 2362–2371 (2012).

    Article 

    Google Scholar
     

  • Cnossen, J. P., Dulin, D. & Dekker, N. H. An optimized software program framework for real-time, high-throughput monitoring of spherical beads. Rev. Sci. Instrum. 85, 103712 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lipfert, J. et al. Strategies and protocols. Strategies Mol. Biol. 582, 71–89 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Z. et al. A power calibration customary for magnetic tweezers. Rev. Sci. Instrum. 85, 123114 (2014).

    Article 

    Google Scholar
     

  • De Vlaminck, I., Henighan, T., van Loenhout, M. T., Burnham, D. R. & Dekker, C. Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PLoS ONE 7, e41432 (2012).

    Article 

    Google Scholar
     

  • Zimmermann, J. L., Nicolaus, T., Neuert, G. & Clean, Okay. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat. Protoc. 5, 975–985 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Yin, J., Lin, A. J., Golan, D. E. & Walsh, C. T. Web site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chen, I., Dorr, B. M. & Liu, D. R. A common technique for the evolution of bond-forming enzymes utilizing yeast show. Proc. Natl Acad. Sci. USA 108, 11399–11404 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Durner, E., Ott, W., Nash, M. A. & Gaub, H. E. Submit-translational sortase-mediated attachment of high-strength power spectroscopy handles. ACS Omega 2, 3064–3069 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Ribeiro, J. V. et al. QwikMD—integrative molecular dynamics toolkit for novices and consultants. Sci. Rep. 6, 26536 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bernardi, R. C. et al. Mechanisms of nanonewton mechanostability in a protein complicated revealed by molecular dynamics simulations and single-molecule power spectroscopy. J. Am. Chem. Soc. 141, 14752–14763 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Finest, R. B. et al. Optimization of the additive CHARMM all-atom protein power subject focusing on improved sampling of the spine ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Principle Comput. 8, 3257–3273 (2012).

    Article 
    CAS 

    Google Scholar
     

  • MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics research of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of easy potential features for simulating liquid water. J. Chem. Phys. 79, 926–935 (1998).

    Article 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) methodology for Ewald sums in giant methods. J. Chem. Phys. 98, 10089–10092 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap 372–391 (CRC Press, 1994).

  • Virtanen, P. et al. SciPy 1.0: basic algorithms for scientific computing in Python. Nat. Strategies 17, 261–272 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Study. Res. 12, 2825–2830 (2011).


    Google Scholar
     

  • Hagberg, A. A., Schult, D. A. & Swart, P. J. ExplorkX. In Proc. seventh Python in Science Convention https://www.osti.gov/servlets/purl/960616 (2008).

  • Hunter, J. D. Matplotlib: a 2D graphics surroundings. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments