Kammerer, C. et al. Biomimetic and technomimetic single molecular machines. Chem. Lett. 48, 299–308 (2019).
Feringa, B. L. The artwork of constructing small: from molecular switches to molecular motors. J. Org. Chem. 72, 6635–6652 (2007).
Tub, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Synthetic molecular machines. Chem. Rev. 115, 10081–10206 (2015).
Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).
von Delius, M. & Leigh, D. A. Strolling molecules. Chem. Soc. Rev. 40, 3656–3676 (2011).
Chakraborty, Okay., Veetil, A. T., Jaffrey, S. R. & Krishnan, Y. Nucleic acid-based nanodevices in organic imaging. Annu. Rev. Biochem. 85, 349–373 (2016).
Cui, C. et al. A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours. Nat. Nanotechnol. 16, 1394–1402 (2021).
Stommer, P. et al. An artificial tubular molecular transport system. Nat. Commun. 12, 4393 (2021).
Li, Y. et al. Leakless end-to-end transport of small molecules by micron-length DNA nanochannels. Sci. Adv. 8, eabq4834 (2022).
Kamiya, Y. & Asanuma, H. Mild-driven DNA nanomachine with a photoresponsive molecular engine. Acc. Chem. Res. 47, 1663–1672 (2014).
Marras, A. E., Zhou, L., Su, H. J. & Castro, C. E. Programmable movement of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).
Kudernac, T. et al. Electrically pushed directional movement of a four-wheeled molecule on a steel floor. Nature 479, 208–211 (2011).
Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Mild-powered autonomous and directional molecular movement of a dissipative self-assembling system. Nat. Nanotechnol. 10, 70–75 (2015).
Erbas-Cakmak, S. et al. Rotary and linear molecular motors pushed by pulses of a chemical gasoline. Science 358, 340–343 (2017).
Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven synthetic molecular pump. Nature 594, 529–534 (2021).
Pumm, A. Okay. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).
Shi, X. et al. Sustained unidirectional rotation of a self-organized DNA rotor on a nanopore. Nat. Phys. 18, 1105 (2022).
Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).
Baroncini, M. et al. Making and working molecular machines: a multidisciplinary problem. ChemistryOpen 7, 169–179 (2018).
Valero, J., Pal, N., Dhakal, S., Walter, N. G. & Famulok, M. A bio-hybrid DNA rotor-stator nanoengine that strikes alongside predefined tracks. Nat. Nanotechnol. 13, 496–503 (2018).
Poppleton, E., Mallya, A., Dey, S., Joseph, J. & Sulc, P. Nanobase.org: a repository for DNA and RNA nanostructures. Nucleic Acids Res. 50, D246–D252 (2022).
Zhou, L., Marras, A. E., Su, H. J. & Castro, C. E. DNA origami compliant nanostructures with tunable mechanical properties. ACS Nano 8, 27–34 (2014).
Shi, Z., Castro, C. E. & Arya, G. Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations. ACS Nano 11, 4617–4630 (2017).
Los, G. V. et al. HaloTag: a novel protein labeling expertise for cell imaging and protein evaluation. ACS Chem. Biol. 3, 373–382 (2008).
Valero, J. & Famulok, M. Regeneration of burnt bridges on a DNA catenane walker. Angew. Chem. Int. Ed. Engl. 59, 16366–16370 (2020).
Yu, Z. et al. A self-regulating DNA rotaxane linear actuator pushed by chemical power. J. Am. Chem. Soc. 143, 13292–13298 (2021).
Scheres, S. H. RELION: implementation of a Bayesian strategy to cryo-EM construction dedication. J. Struct. Biol. 180, 519–530 (2012).
Pereira, M. J. et al. Single VS ribozyme molecules reveal dynamic and hierarchical folding towards catalysis. J. Mol. Biol. 382, 496–509 (2008).
Sabanayagam, C. R., Eid, J. S. & Meller, A. Utilizing fluorescence resonance power switch to measure distances alongside particular person DNA molecules: corrections because of nonideal switch. J. Chem. Phys. 122, 061103 (2005).
Guajardo, R., Lopez, P., Dreyfus, M. & Sousa, R. NTP focus results on preliminary transcription by T7 RNAP point out that translocation happens by passive sliding and reveal that divergent promoters have distinct NTP focus necessities for productive initiation. J. Mol. Biol. 281, 777–792 (1998).
Koh, H. R. et al. Correlating transcription initiation and conformational adjustments by a single-subunit RNA Polymerase with close to base-pair decision. Mol. Cell 70, 695–706 e695 (2018).
Tang, G. Q., Roy, R., Bandwar, R. P., Ha, T. & Patel, S. S. Actual-time commentary of the transition from transcription initiation to elongation of the RNA polymerase. Proc. Natl Acad. Sci. USA 106, 22175–22180 (2009).
Kim, J. H. & Larson, R. G. Single-molecule evaluation of 1D diffusion and transcription elongation of T7 RNA polymerase alongside particular person stretched DNA molecules. Nucleic Acids Res. 35, 3848–3858 (2007).
Martin, C. T., Muller, D. Okay. & Coleman, J. E. Processivity in early phases of transcription by T7 RNA polymerase. Biochemistry 27, 3966–3974 (1988).
Lee, S., Nguyen, H. M. & Kang, C. Tiny abortive initiation transcripts exert antitermination exercise on an RNA hairpin-dependent intrinsic terminator. Nucleic Acids Res. 38, 6045–6053 (2010).
Henderson, Okay. L. et al. RNA polymerase: step-by-step kinetics and mechanism of transcription initiation. Biochemistry 58, 2339–2352 (2019).
Revyakin, A., Liu, C., Ebright, R. H. & Strick, T. R. Abortive initiation and productive initiation by RNA polymerase contain DNA scrunching. Science 314, 1139–1143 (2006).
Shen, H. & Kang, C. Two web site contact of elongating transcripts to phage T7 RNA polymerase at C-terminal areas. J. Biol. Chem. 276, 4080–4084 (2001).
Ouldridge, T. E., Louis, A. A. & Doye, J. P. Okay. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA mannequin. J. Chem. Phys. 134, 085101 (2011).
Rovigatti, L., Sulc, P., Reguly, I. Z. & Romano, F. A comparability between parallelization approaches in molecular dynamics simulations on GPUs. J. Comput. Chem. 36, 1–8 (2015).
Snodin, B. E. et al. Introducing improved structural properties and salt dependence right into a coarse-grained mannequin of DNA. J. Chem. Phys. 142, 234901 (2015).
Sulc, P. et al. Sequence-dependent thermodynamics of a coarse-grained DNA mannequin. J. Chem. Phys. https://doi.org/10.1063/1.4754132 (2012).
Thomen, P. et al. T7 RNA polymerase studied by pressure measurements various cofactor focus. Biophys. J. 95, 2423–2433 (2008).
Durniak, Okay. J., Bailey, S. & Steitz, T. A. The construction of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science 322, 553 (2008).
Ramezani, H. & Dietz, H. Constructing machines with DNA molecules. Nat. Rev. Genet. 21, 5–26 (2020).
Yoon, J., Eyster, T. W., Misra, A. C. & Lahann, J. Cardiomyocyte-driven actuation in biohybrid microcylinders. Adv. Mater. 27, 4509–4515 (2015).
Sagara, Y. et al. Rotaxanes as mechanochromic fluorescent pressure transducers in polymers. J. Am. Chem. Soc. 140, 1584–1587 (2018).
Chen, S. et al. A man-made molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140, 17992–17998 (2018).
DeLuca, M., Shi, Z., Castro, C. E. & Arya, G. Dynamic DNA nanotechnology: towards purposeful nanoscale gadgets. Nanoscale Horiz. 5, 182–201 (2020).
Gerling, T., Wagenbauer, Okay. F., Neuner, A. M. & Dietz, H. Dynamic DNA gadgets and assemblies fashioned by shape-complementary, non-base pairing 3D parts. Science 347, 1446–1452 (2015).
Skugor, M. et al. Orthogonally photocontrolled non-autonomous DNA walker. Angew. Chem. Int. Ed. Engl. 58, 6948–6951 (2019).
Wang, S. et al. Mild-induced reversible reconfiguration of DNA-based constitutional dynamic networks: utility to switchable catalysis. Angew. Chem. Int. Ed. Engl. 57, 8105–8109 (2018).
Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. Photoregulation of the formation and dissociation of a DNA duplex by utilizing the cis–trans isomerization of azobenzene. Angew. Chem. Int. Ed. Engl. 38, 2393–2395 (1999).
Liu, M., Asanuma, H. & Komiyama, M. Azobenzene-tethered T7 promoter for environment friendly photoregulation of transcription. J. Am. Chem. Soc. 128, 1009–1015 (2006).
Roy, R., Hohng, S. & Ha, T. A sensible information to single-molecule FRET. Nat. Strategies 5, 507–516 (2008).
Chandradoss, S. D. et al. Floor passivation for single-molecule protein research. J. Vis. Exp. https://doi.org/10.3791/50549 (2014).
Ouldridge, T. E., Sulc, P., Romano, F., Doye, J. P. Okay. & Louis, A. A. DNA hybridization kinetics: zippering, inner displacement and sequence dependence. Nucleic Acids Res. 41, 8886–8895 (2013).
Snodin, B. E. Okay. et al. Direct simulation of the self-assembly of a small DNA origami. Acs Nano 10, 1724–1737 (2016).
Douglas, S. M. et al. Fast prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).
Suma, A. et al. TacoxDNA: a user-friendly net server for simulations of complicated DNA constructions, from single strands to origami. J. Comput. Chem. 40, 2586–2595 (2019).
Bohlin, J. et al. Design and simulation of DNA, RNA and hybrid protein–nucleic acid nanostructures with oxView. Nat. Protoc. 17, 1762–1788 (2022).
Poppleton, E. et al. Design, optimization and evaluation of enormous DNA and RNA nanostructures by interactive visualization, modifying and molecular simulation. Nucl. Acids Res. https://doi.org/10.1093/nar/gkaa417 (2020)
Doye, J. P. Okay. et al. The oxDNA coarse-grained mannequin as a instrument to simulate DNA origami. Strategies Mol. Biol. 2639, 93–112 (2023).
Skinner, G. M., Kalafut, B. S. & Visscher, Okay. Downstream DNA rigidity regulates the soundness of the T7 RNA polymerase initiation complicated. Biophys. J. 100, 1034–1041 (2011).
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New instruments for automated cryo-EM single-particle evaluation in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Pc visualization of three-dimensional picture information utilizing IMOD. J. Struct. Biol. 116, 71–76 (1996).
Mindell, J. A. & Grigorieff, N. Correct dedication of native defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).
Vester, B. & Wengel, J. LNA (locked nucleic acid): high-affinity concentrating on of complementary RNA and DNA. Biochemistry 43, 13233–13241 (2004).