Friday, October 13, 2023
HomeNanotechnologyExcessive-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with sturdy outside-in...

Excessive-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with sturdy outside-in buildings


  • Duffner, F. et al. Put up-lithium-ion battery cell manufacturing and its compatibility with lithium-ion cell manufacturing infrastructure. Nat. Vitality 6, 123–134 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Chen, B., Ma, J., Cui, G. & Chen, L. Reviving lithium cobalt oxide-based lithium secondary batteries—towards a better power density. Chem. Soc. Rev. 47, 6505–6602 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, H. H., Solar, H. H., Myung, S. T., Yoon, C. S. & Solar, Y. Ok. Lowering cobalt from lithium-ion batteries for the electrical automobile period. Vitality Environ. Sci. 14, 844–852 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, A. et al. Battery know-how and recycling alone is not going to save the electrical mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Voronina, N., Solar, Y. Ok. & Myung, S. T. Co-free layered cathode supplies for prime power density lithium-ion batteries. ACS Vitality Lett. 5, 1814–1824 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and again once more—the journey of LiNiO2 as a cathode energetic materials. Angew. Chem. Int. Ed. 58, 10434–10458 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yu, L. et al. Excessive nickel and no cobalt—the pursuit of next-generation layered oxide cathodes. ACS Appl. Mater. Interfaces 14, 23056–23065 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. Y. et al. Resolving atomic-scale section transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4, 2013–2026 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. J., Kazyak, E., Dasgupta, N. P. & Sakamoto, J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with sensible issues. Joule 5, 1371–1390 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. H. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from basic analysis to sensible engineering design. Vitality Environ. Sci. 14, 2577–2619 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L. D. et al. Excessive areal capability, lengthy cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride strong electrolytes. Nat. Vitality 7, 83–93 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. A common wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 7, eabh1896 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L. D. et al. A brand new halospinel superionic conductor for high-voltage all strong state lithium batteries. Vitality Environ. Sci. 13, 2056–2063 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yin, Y. C. et al. A LaCl3-based lithium superionic conductor suitable with lithium metallic. Nature 616, 77–83 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Deng, S. X. et al. Eliminating the detrimental results of conductive brokers in sulfide-based solid-state batteries. ACS Vitality Lett. 5, 1243–1251 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. L. et al. Bidirectionally suitable buffering layer allows extremely secure and conductive interface for 4.5 V sulfide-based all-solid-state lithium batteries. Adv. Vitality Mater. 11, 2100881 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Culver, S. P., Koerver, R., Zeier, W. G. & Janek, J. On the performance of coatings for cathode energetic supplies in thiophosphate-based all-solid-state batteries. Adv. Vitality Mater. 9, 1900626 (2019).

    Article 

    Google Scholar
     

  • Ma, Y. et al. Biking efficiency and limitations of LiNiO2 in solid-state batteries. ACS Vitality Lett. 6, 3020–3028 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y.-G. et al. Excessive-energy long-cycling all-solid-state lithium metallic batteries enabled by silver–carbon composite anodes. Nat. Vitality 5, 299–308 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Interfacial processes and affect of composite cathode microstructure controlling the efficiency of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cao, D. et al. Secure thiophosphate-based all-solid-state lithium batteries by means of conformally interfacial nanocoating. Nano Lett. 20, 1483–1490 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Secure Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2, 537–545 (2022).

    Article 

    Google Scholar
     

  • Zhao, Y., Zheng, Ok. & Solar, X. L. Addressing interfacial points in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2, 2583–2604 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. Mechanism for Al2O3 atomic layer deposition on LiMn2O4 from in situ measurements and ab initio calculations. Chem 4, 2418–2435 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Warburton, R. E., Younger, M. J., Letourneau, S., Elam, J. W. & Greeley, J. Descriptor-based evaluation of atomic layer deposition mechanisms on spinel LiMn2O4 lithium-ion battery cathodes. Chem. Mater. 32, 1794–1806 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. A novel bifunctional self-stabilized technique enabling 4.6 V LiCoO2 with wonderful long-term cyclability and high-rate functionality. Adv. Sci. 6, 1900355 (2019).

    Article 

    Google Scholar
     

  • Huang, H. et al. Uncommon double ligand holes as catalytic energetic websites in LiNiO2. Nat. Commun. 14, 2112 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 31677–31683 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, N. et al. Unraveling the cationic and anionic redox reactions in a standard layered oxide cathode. ACS Vitality Lett. 4, 2836–2842 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Concept-driven design of high-valence metallic websites for water oxidation confirmed utilizing in situ tender X-ray absorption. Nat. Chem. 10, 149–154 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guo, H. et al. Antiferromagnetic correlations within the metallic strongly correlated transition metallic oxide LaNiO3. Nat. Commun. 9, 43 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Elucidating anionic oxygen exercise in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    Article 

    Google Scholar
     

  • Mu, L. et al. Structural and electrochemical impacts of Mg/Mn twin dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl. Mater. Interfaces 12, 12874–12882 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Inexperienced, R. J., Haverkort, M. W. & Sawatzky, G. A. Bond disproportionation and dynamical cost fluctuations within the perovskite rare-earth nickelates. Phys. Rev. B 94, 195127 (2016).

    Article 

    Google Scholar
     

  • Agrestini, S. et al. Nature of the magnetism of iridium within the double perovskite Sr2CoIrO6. Phys. Rev. B 100, 014443 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Han, M. et al. Eliminating transition metallic migration and anionic redox to know voltage hysteresis of lithium-rich layered oxides. Adv. Vitality Mater. 10, 1903634 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. B. et al. Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries by means of further LiOH. Vitality Storage Mater. 41, 505–514 (2021).

    Article 

    Google Scholar
     

  • Kim, A. Y. et al. Stabilizing impact of a hybrid floor coating on a Ni-rich NCM cathode materials in all-solid-state batteries. Chem. Mater. 31, 9664–9672 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Levartovsky, Y. et al. Enhancement of structural, electrochemical, and thermal properties of Ni‐wealthy LiNi0.85Co0.1Mn0.05O2 cathode supplies for Li‐ion batteries by Al and Ti doping. Batter. Supercaps 4, 221–231 (2020).

    Article 

    Google Scholar
     

  • Fang, R., Liu, Y., Li, Y., Manthiram, A. & Goodenough, J. B. Reaching secure all-solid-state lithium-metal batteries by tuning the cathode–electrolyte interface and ionic/digital transport throughout the cathode. Mater. Right this moment 64, 52–60 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, U. H. et al. Microstructure- and interface-modified Ni-rich cathode for high-energy-density all-solid-state lithium batteries. ACS Vitality Lett. 8, 809–817 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, F. P. et al. Tuning bifunctional interface for superior sulfide-based all-solid-state batteries. Vitality Storage Mater. 33, 139–146 (2020).

    Article 

    Google Scholar
     

  • Ma, Y. et al. Superior nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 32, 2111829 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. et al. Electro-chemo-mechanical points on the interfaces in solid-state lithium metallic batteries. Adv. Funct. Mater. 29, 1900950 (2019).

    Article 

    Google Scholar
     

  • Tallman, Ok. R. et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and prolonged biking results utilizing operando X-ray absorption spectroscopy. J. Phys. Chem. C. 125, 58–73 (2020).

    Article 

    Google Scholar
     

  • Zak, J. J., Kim, S. S., Laskowski, F. A. L. & See, Ok. A. An exploration of sulfur redox in lithium battery cathodes. J. Am. Chem. Soc. 144, 10119–10132 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries utilizing time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deng, S. X. et al. Perception into cathode floor to spice up the efficiency of solid-state batteries. Vitality Storage Mater. 35, 661–668 (2021).

    Article 

    Google Scholar
     

  • Wu, Y. Q. et al. Extremely reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Vitality Environ. Sci. 15, 3470–3482 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Strauss, F. et al. Li2ZrO3-coated NCM622 for utility in inorganic solid-state batteries: function of floor carbonates within the biking efficiency. ACS Appl. Mater. Interfaces 12, 57146–57154 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl towards LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. et al. Strong-state lithium battery cathodes working at low pressures. Joule 6, 636–646 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, F., Maier, J. & Yu, Y. Pointers and traits for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Luo, S. et al. Development of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. In-situ visualization of the space-charge-layer impact on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lutterotti, L. Complete sample becoming for the mixed measurement–pressure–stress–texture dedication in skinny movie diffraction. Nucl. Instrum. Strategies Phys. Res. B 268, 334–340 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Cowan, R. D. The Concept of Atomic Construction and Spectra (College of California Press, 1981).

  • Slater, J. C. & Koster, G. F. Simplified LCAO technique for the periodic potential drawback. Phys. Rev. 94, 1498–1524 (1954).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments