Liu, Z., Tabakman, S. M., Chen, Z. & Dai, H. Preparation of carbon nanotube bioconjugates for biomedical functions. Nat. Protoc. 4, 1372–1381 (2009).
Wang, X. & Liu, Z. Carbon nanotubes in biology and medication: an summary. Chin. Sci. Bull. 57, 167–180 (2012).
Gillen, A. J. et al. Templating colloidal sieves for tuning nanotube floor interactions and optical sensor responses. J. Colloid Interf. Sci. 565, 55–62 (2020).
Gillen, A. J. & Boghossian, A. A. Non-covalent strategies of engineering optical sensors primarily based on single-walled carbon nanotubes. Entrance Chem. 7, 612 (2019).
Lambert, B., Gillen, A. J., Schuergers, N., Wu, S. J. & Boghossian, A. A. Directed evolution of the optoelectronic properties of artificial nanomaterials. Chem. Commun. 55, 3239–3242 (2019).
Wu, S. J. et al. Restriction enzyme evaluation of double-stranded DNA on pristine single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 10, 37386–37395 (2018).
Hashida, Y. et al. Photothermal ablation of tumor cells utilizing a single-walled carbon nanotube-peptide composite. J. Management. Launch 173, 58–66 (2014).
Jena, P. V. et al. Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon 97, 99–109 (2016).
Boghossian, A. A. et al. Close to-infrared fluorescent sensors primarily based on single-walled carbon nanotubes for all times sciences functions. ChemSusChem 4, 848–863 (2011).
Heller, D. A. et al. Multimodal optical sensing and analyte specificity utilizing single-walled carbon nanotubes. Nat. Nanotechnol. 4, 114–120 (2009).
Zubkovs, V., Schuergers, N., Lambert, B., Ahunbay, E. & Boghossian, A. A. Mediatorless, reversible optical nanosensor enabled via enzymatic pocket doping. Small 13, 1701654 (2017).
Gillen, A. J., Kupis-Rozmyslowicz, J., Gigli, C., Schürgers, N. & Boghossian, A. A. Xeno nucleic acid nanosensors for enhanced stability towards ion-induced perturbations. J. Phys. Chem. Lett. 9, 4336–4343 (2018).
Bachilo, S. M. et al. Construction-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).
Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Close to-infrared optical sensors primarily based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2005).
Holt, B. D., Dahl, Ok. N., Islam, M. F. & Al, H. E. T. Cells take up and get well from nanotubes with two distinct charges. ACS Nano 6, 3481–3490 (2012).
Boyer, P. et al. Delivering single-walled carbon nanotubes to the nucleus utilizing engineered nuclear protein domains. ACS Appl. Mater. Interfaces 8, 3524–3534 (2016).
Giraldo, J. P. et al. Plant nanobionics method to reinforce photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).
Mouhib, M. et al. Enhancing bioelectricity technology in microbial gas cells and biophotovoltaics utilizing nanomaterials. Nano Res. https://doi.org/10.1007/s12274-019-2438-0 (2019).
Wong, M. H. et al. Lipid Trade Envelope Penetration (LEEP) of nanoparticles for plant engineering: a common localization mechanism. Nano Lett. 16, 1161–1172 (2016).
Kwak, S.-Y. et al. Chloroplast-selective gene supply and expression in planta utilizing chitosan-complexed single-walled carbon nanotube carriers. Nat. Nanotechnol. 14, 447–455 (2019).
Zubkovs, V. et al. Spinning-disc confocal microscopy within the second near-infrared window (NIR-II). Sci. Rep. 8, 13770 (2018).
Kostarelos, Ok. et al. Mobile uptake of functionalized carbon nanotubes is unbiased of practical group and cell sort. Nat. Nanotechnol. 2, 108–113 (2007).
Heller, D. A. et al. Concomitant size and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).
Rajan, A., Strano, M. S., Heller, D. A., Hertel, T. & Schulten, Ok. Size-dependent optical results in single walled carbon nanotubes. J. Phys. Chem. B 112, 6211–6213 (2008).
Barone, P. W., Parker, R. S. & Strano, M. S. In vivo fluorescence detection of glucose utilizing a single-walled carbon nanotube optical sensor: design, fluorophore properties, benefits, and drawbacks. Anal. Chem. 77, 7556–7562 (2005).
Robinson, S. J., Deroo, C. S. & Yocum, C. F. Photosynthetic electron switch in preparations of the cyanobacterium spirulina platensis. Plant Physiol. 70, 154–161 (1982).
Gonzalez-Aravena, A. C., Yunus, Ok., Zhang, L., Norling, B. & Fisher, A. C. Tapping into cyanobacteria electron switch for increased exoelectrogenic exercise by imposing iron restricted development. RSC Adv. 8, 20263–20274 (2018).
Orlanducci, S. et al. Mapping single walled carbon nanotubes in photosynthetic algae by single-cell confocal Raman microscopy. Supplies 13, 5121 (2020).
Gierlinger, N., Keplinger, T. & Harrington, M. Imaging of plant cell partitions by confocal Raman microscopy. Nat. Protoc. 7, 1694–1708 (2012).
Neves, V. et al. Uptake and launch of double-walled carbon nanotubes by mammalian cells. Adv. Funct. Mater. 20, 3272–3279 (2010).
Xie, L. et al. Single-walled carbon nanotubes probing the denaturation of lysozyme. J. Phys. Chem. C 114, 7717–7720 (2010).
Holt, B. D., Dahl, Ok. N. & Islam, M. F. Quantification of uptake and localization of bovine serum albumin-stabilized single-wall carbon nanotubes in several human cell varieties. Small 7, 2348–2355 (2011).
Nepal, D. & Geckeler, Ok. E. Proteins and carbon nanotubes: shut encounter in water. Small 3, 1259–1265 (2007).
Jacobson, Ok. H. et al. Lipopolysaccharide density and construction govern the extent and distance of nanoparticle interplay with precise and mannequin bacterial outer membranes. Environ. Sci. Technol. 49, 10642–10650 (2015).
Schuergers, N. & Wilde, A. Appendages of the cyanobacterial cell. Life 5, 700–715 (2015).
Dienst, D. et al. The cyanobacterial homologue of the RNA Chaperone Hfq is important for motility of Synechocystis sp. PCC 6803. Microbiology 154, 3134–3143 (2008).
Duggan, P. S., Gottardello, P. & Adams, D. G. Molecular evaluation of genes in Nostoc punctiforme concerned in pilus biogenesis and plant an infection. J. Bacteriol. 189, 4547–4551 (2007).
Herrero, A., Stavans, J. & Flores, E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 40, 831–854 (2016).
Pantarotto, D., Briand, J.-P., Prato, M. & Bianco, A. Translocation of bioactive peptides throughout cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17 (2004).
Kraszewski, S., Bianco, A., Tarek, M. & Ramseyer, C. Insertion of quick amino-functionalized single-walled carbon nanotubes into phospholipid bilayer happens by passive diffusion. PLoS ONE 7, e40703 (2012).
Mu, Q., Broughton, D. L. & Yan, B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: growing a mannequin for cell uptake. Nano Lett. https://doi.org/10.1021/nl902647x (2009).
Lacerda, L. et al. How do functionalized carbon nanotubes land on, bind to and pierce via mannequin and plasma membranes. Nanoscale 5, 10242–10250 (2013).
Demirer, G. S. et al. Excessive side ratio nanomaterials allow supply of practical genetic materials with out DNA integration in mature vegetation. Nat. Nanotechnol. 14, 456–464 (2019).
Costa, P. M., Bourgognon, M., Wang, J. T. W. & Al-Jamal, Ok. T. Functionalized carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic mind supply. J. Management. Launch 241, 200–219 (2016).
Kowata, H., Tochigi, S., Takahashi, H. & Kojima, S. Outer membrane permeability of cyanobacterium Synechocystis sp. pressure PCC 6803: research of passive diffusion of small natural vitamins reveal the absence of classical porins and intrinsically low permeability. J. Bacteriol. 199, e00371-17 (2017).
Gao, Y. et al. Predictive fashions of diffusive nanoparticle transport in three-d tumor cell spheroids. AAPS J. 15, 816–831 (2013).
Allen, B. L. et al. Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. J. Am. Chem. Soc. 131, 17194–17205 (2009).
Kotchey, G. P., Zhao, Y., Kagan, V. E. & Star, A. Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Adv. Drug Deliv. Rev. 65, 1921–1932 (2013).
Ignatova, T., Chandrasekar, S., Pirbhai, M., Jedlicka, S. S. & Rotkin, S. V. Micro-Raman spectroscopy as an enabling instrument for long-term intracellular research of nanomaterials at nanomolar focus ranges. J. Mater. Chem. B 5, 6536–6545 (2017).
Pan, J., Li, F. & Choi, J. H. Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. J. Mater. Chem. B 5, 6511–6652 (2017).
Galassi, T. V. et al. Lengthy-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS ONE 15, e0226791 (2020).
Pirbhai, M. et al. Augmentation of C17. 2 neural stem cell differentiation through uptake of low concentrations of ssDNA‐wrapped single‐walled carbon nanotubes. Adv. Biosyst. 3, 1800321 (2019).
Reggente, M., Politi, S., Antonucci, A., Tamburri, E. & Boghossian, A. A. Design of optimized PEDOT-based electrodes for enhancing efficiency of dwelling photovoltaics primarily based on phototropic micro organism. Adv. Mater. Technol. 5, 1900931 (2020).
Bombelli, P. et al. Quantitative evaluation of the elements limiting solar energy transduction by Synechocystis sp. PCC 6803 in organic photovoltaic units. Vitality Environ. Sci. 4, 4690–4698 (2011).
Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338–342 (2003).
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, pressure histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).
Schuergers, N., Nürnberg, D. J., Wallner, T., Mullineaux, C. W., & Wilde, A. PilB localization correlates with the path of twitching motility within the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 161, 960–966 (2015).
Gao, Z. et al. Optical detection of particular person ultra-short carbon nanotubes permits their size characterization right down to 10 Nm. Sci. Rep. 5, 17093 (2015).
Nečas, D. & Klapetek, P. Gwyddion: an open-source software program for SPM information evaluation. Open Physics 10, 181–188 (2012).
Jin, H., Heller, D. A., Sharma, R. & Strano, M. S. Measurement-dependent mobile uptake and expulsion of single-walled carbon nanotubes: single particle monitoring and a generic uptake mannequin for nanoparticles. ACS Nano 3, 149–158 (2009).
Ritchie, R. J. Constant units of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).
Currie, J. & Wilson, D. I. OPTI: Decreasing the barrier between open supply optimizers and the economic MATLAB person. In Proc. Foundations of Pc-Aided Course of Operations (Omnipress, 2012); http://focapo.cheme.cmu.edu/2012/proceedings/information/begin.htm
Schindelin, J. et al. Fiji: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).