Friday, September 15, 2023
HomeNanotechnologyPowering mesoporous silica nanoparticles into bioactive nanoplatforms for antibacterial therapies: methods and...

Powering mesoporous silica nanoparticles into bioactive nanoplatforms for antibacterial therapies: methods and challenges | Journal of Nanobiotechnology


  • Zhang L, Wang H, Shen Y, Solar Y, Zhou J, Chen J. Glycosaminoglycans immobilized core-shell gold mesoporous silica nanoparticles for synergetic chemo-photothermal remedy of most cancers cells. Mater Letter. 2021;308: 131113.

    Article 

    Google Scholar
     

  • Muhsen IN, Galeano S, Niederwieser D, Koh MBC, Ljungman P, Machado CM, Kharfan-Dabaja MA, Camara R, Kodera Y, Szer J, Rasheed W, Cesaro S, Hashmi SK, Seber A, Atsuta Y, Saleh MFM, Srivastava A, Styczynski J, Alrajhi A, Almaghrabi R, Abid MB, Chemaly RF, Gergis U, Brissot E, El Fakih R, Riches M, Mikulska M, Worel N, Weisdorf D, Greinix H, Cordonnier C, Aljurf M. Endemic or regionally restricted bacterial and viral infections in haematopoietic stem-cell transplantation recipients: a worldwide community for blood and marrow transplantation (wbmt) evaluate. Lancet Haematol. 2023;10:e284–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention-a journey to interrupt the wall: a evaluate. Arc Microbiol. 2016;198:1–15.

    Article 
    CAS 

    Google Scholar
     

  • Sousa A, Phung AN, Skalko-Basnet N, Obuobi S. Sensible supply programs for microbial biofilm remedy: dissecting design, drug launch and toxicological options. J Management Launch. 2023;354:394–416.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Dhama Ok, Ripon MKH, Gajdacs M, Sahibzada MUK, Hossain MJ, Koirala N. Antibiotic resistance in microbes: Historical past, mechanisms, therapeutic methods and future prospects. J Infect Publ Well being. 2021;14:1750–66.

    Article 

    Google Scholar
     

  • Tan P, Fu HY, Ma X. Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to functions. Nano At the moment. 2021;39:10229.

    Article 

    Google Scholar
     

  • Ye L, Cao ZM, Liu XM, Cui ZD, Li ZY, Liang YQ, Zhu SL, Wu SL. Noble metal-based nanomaterials as antibacterial brokers. J Alloy Compd. 2022;904: 164091.

    Article 
    CAS 

    Google Scholar
     

  • Yang Y, Solar JY, Wen JH, Mo SD, Wang JL, Zhang Z, Wang GC, Liu MY, Liu HJ. Single-atom doping in carbon black nanomaterials for photothermal antibacterial functions. Cell Rep Phys Sci. 2021;2: 100535.

    Article 
    CAS 

    Google Scholar
     

  • Manivasagan P, Kim J, Jang ES. Latest progress in multifunctional conjugated polymer nanomaterial- based mostly synergistic mixture phototherapy for microbial an infection theranostics. Coord Chem Rev. 2022;470: 214701.

    Article 
    CAS 

    Google Scholar
     

  • Badran Z, Rahman B, De Bonfils P, Nun P, Coeffard V, Verron E. Antibacterial nanophotosensitizers in photodynamic remedy: an replace. Drug Discov At the moment. 2023;28: 103493.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jafari S, HosseinAlaei LF, AliVarnamkhasti BS, Akbar A. Mesoporous silica nanoparticles for therapeutic/diagnostic functions. Biome Pharmacother. 2019;109:1100–11.

    Article 
    CAS 

    Google Scholar
     

  • Xu Q, Yang Y, Lu J, Lin Y, Feng S, Luo X, Di D, Wang S, Zhao Q. Latest tendencies of mesoporous silica-based nanoplatforms for nanodynamic therapies. Coord Chem Rev. 2022;469:2146987.

    Article 

    Google Scholar
     

  • Huang R, Shen YW, Guan YY, Jiang YX, Wu Y, Rahman Ok, Zhang LJ, Liu HJ, Luan X. Mesoporous silica nanoparticles: facile floor functionalization and versatile biomedical functions in oncology. Acta Biomater. 2020;116:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Ok, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Present tendencies in sensible mesoporous silica-based nanovehicles for photoactivated most cancers remedy. J Controll Launch. 2021;339:445–72.

    Article 
    CAS 

    Google Scholar
     

  • Huang P, Lian D, Ma H, Gao N, Zhao L, Luan P, Zeng X. New advances in gated supplies of mesoporous silica for drug managed launch. Chin Chem Lett. 2021;32:3696–704.

    Article 
    CAS 

    Google Scholar
     

  • Kankala RK, Han Y, Na J, Lee C, Wu CW. Nanoarchitectured construction and floor biofunctionality of Mesoporous Silica nanoparticles. Adv Mater. 2020;32:1907035.

    Article 
    CAS 

    Google Scholar
     

  • Castillo RR, Lozano D, Gonzalez B, Manzano M, Izquierdo-Barba I, Vallet-Regi M. Advances in mesoporous silica nanoparticles for focused stimuli-responsive drug supply: an replace. Professional Opin Drug Deliv. 2019;16:415–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castillo RR, Colilla M, Vallet-Regí M. Advances in mesoporous silica-based nanocarriers for co-delivery and mixture remedy towards most cancers. Professional Opin Drug Deliv. 2016;14:219.


    Google Scholar
     

  • Feng S, Lu J, Wang Ok, Di D, Shi Z, Zhao Q, Wang S. Advances in sensible mesoporous carbon nanoplatforms for photothermal-enhanced synergistic most cancers remedy. Chem Eng J. 2022;435: 134886.

    Article 
    CAS 

    Google Scholar
     

  • Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as promising different within the an infection remedy. Inter J Mol Sci. 2019;20:3806.

    Article 

    Google Scholar
     

  • Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner RJ, Martínez-Máez R. Mesoporous Silica-based supplies with bactericidal properties. Small. 2019;15:1909669.

    Article 

    Google Scholar
     

  • Zhou S, Zhong Q, Wang Y, Hu P, Zhong W, Huang C-B, Yu Z-Q, Ding C-D, Liu H, Fu J. Chemically engineered mesoporous silica nanoparticles-based clever supply programs for theranostic functions in a number of cancerous/non-cancerous illnesses. Coord Chem Rev. 2022;452:214309.

    Article 
    CAS 

    Google Scholar
     

  • He J, Hong M, Xie W, Chen Z, Chen D, Xie S. Progress and prospects of nanomaterials towards resistant micro organism. J Management Launch. 2022;351:301–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei H, Tune X, Liu P, Liu X, Yan X, Yu L. Antimicrobial coating technique to stop orthopaedic device-related infections: current advances and future views. Biomater Adv. 2022;135: 212739.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvarajan V, Obuobi S, Ee P. Silica nanoparticles-a versatile instrument for the remedy of bacterial infections. Entrance in Chem. 2020;8:602.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ. Nanotechnology-based antimicrobials and supply programs for biofilm-infection management. Chem Soc Rev. 2019;48:428–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical functions. Chem Soc Rev. 2012;41:2590–605.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ndayishimiye J, Cao Y, Kumeria T, Blaskovich MAT, Falconer JR, Popat A. Engineering mesoporous silica nanoparticles in direction of oral supply of vancomycin. J Mater Chem B. 2021;9:7145–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng S, Huang B, Lin Y, Pei G, Zhang L. Impact of floor functionalization and pore construction sort on the discharge efficiency of Mesoporous Silica nanoparticles. Micropor Mesopor Mat. 2022;336: 111862.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Nor YA, Tune H, Yang Y, Xu C, Yu M, Yu C. Small-sized and large-pore dendritic mesoporous silica nanoparticles improve antimicrobial enzyme supply. J Mater Chem B. 2016;4:2646–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belbekhouche S, Poostforooshan J, Shaban M, Ferrara B, Alphonse V, Cascone I, Bousserrhine N, Courty J, Weber AP. Fabrication of enormous pore mesoporous silica microspheres by salt-assisted spray-drying methodology for enhanced antibacterial exercise and pancreatic most cancers remedy. Int J Pharm. 2020;590: 119930.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poostforooshan J, Belbekhouche S, Shaban M, Alphonse V, Habert D, Bousserrhine N, Courty J, Weber AP. Aerosol-assisted synthesis of tailored hole mesoporous silica microspheres for managed launch of antibacterial and anticancer brokers. ACS Appl Mater Interfaces. 2020;12:6885–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Gou Ok, Guo X, Ke J, Li S, Li H. Advances in regulating physicochemical properties of mesoporous silica nanocarriers to beat organic boundaries. Acta Biomater. 2021;123:72–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu Y, Slomberg DL, Solar B, Schoenfisch MH. Form- and nitric oxide flux-dependent bactericidal exercise of nitric oxide-releasing silica nanorods. Small. 2013;9:2189–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Ok, Xu LL, Jiang JG, Calin N, Lam KF, Zhang SJ, Wu HH, Wu GD, Albela B, Bonneviot L, Wu P. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore construction. J Am Chem Soc. 2013;135:2427–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cong VT, Gaus Ok, Tilley RD, Gooding JJ. Rod-shaped mesoporous silica nanoparticles for nanomedicine: current progress and views. Professional Opin Drug Deliv. 2018;15:881–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teng Z, Li W, Tang Y, Elzatahry A, Lu G, Zhao D. Mesoporous organosilica hole nanoparticles: synthesis and functions. Adv Mater. 2019;31: e1707612.

    Article 
    PubMed 

    Google Scholar
     

  • Hao N, Chen X, Jayawardana KW, Wu B, Sundhoro M, Yan M. Form management of mesoporous silica nanomaterials templated with twin cationic surfactants and their antibacterial actions. Biomater Sci. 2016;4:87–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbaraju PL, Meka AK, Tune H, Yang Y, Jambhrunkar M, Zhang J, Xu C, Yu M, Yu C. uneven silica nanoparticles with tunable head-tail constructions improve hemocompatibility and maturation of immune cells. J Am Chem Soc. 2017;139:6321–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Niu Y, Popat A, Jambhrunkar S, Karmakar S, Yu C. Rod-like mesoporous silica nanoparticles with tough surfaces for enhanced mobile supply. J Mater Chem B. 2014;2:253–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Zhang L, Dong Z, Liu Ok, He H, Lu Y, Wu W, Qi J. Rod-like mesoporous silica nanoparticles facilitate oral drug supply through enhanced permeation and retention impact in mucus. Nano Res. 2022;15:10.

    Article 
    CAS 

    Google Scholar
     

  • Martinez-Carmona M. Concanavalin A-targeted mesoporous silica nanoparticles for an infection remedy. Acta Biomater. 2019;96:547.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen YA, Liu AG, Huang L, Lengthy LQ, Gan J. Folic acid-modified mesoporous silica nanoparticles with pH-responsiveness loaded with amp for an enhanced impact towards anti-drug-resistant micro organism by overcoming efflux pump programs. Biomater Sci. 2018;6:1923.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carniello V, Peterson BW, VanderMei HC, Busscher HJ. Physico-chemistry from preliminary bacterial adhesion to surface-programmed biofilm progress. Adv Colloid Interface Sci. 2018;261:1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedraza D, Díez J, Isabel Izquierdo B, Colilla M, Vallet-Regí M. Amine-functionalized mesoporous silica nanoparticles: a brand new nanoantibiotic for bone an infection remedy. Biomed Glasses. 2018;4:1–12.

    Article 

    Google Scholar
     

  • Tian Y, Qi J, Zhang W, Cai Q, Jiang X. Facile, one-pot synthesis, and antibacterial exercise of mesoporous silica nanoparticles embellished with well-dispersed silver nanoparticles. Acs Appl Mater Interfaces. 2014;6:12038–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, He Y, Shi C, Solar M, Yang C, Li H, Chen F, Chang Z, Zheng X, Wang Z, Dong W-f, She J, Shao D. Tannic acid-assisted synthesis of biodegradable and antibacterial mesoporous organosilica nanoparticles embellished with nanosilver. ACS Sus Chem Eng. 2020;8:1695–702.

    Article 

    Google Scholar
     

  • Kankala RK, Wang SB, Chen AZ. Nanoarchitecting hierarchical mesoporous siliceous frameworks a brand new manner ahead. iScience. 2020;23:101687.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Liu X, Xue F. Virus-like mesoporous silica-coated plasmonic Ag nanocube with sturdy micro organism adhesion for diabetic wound ulcer therapeutic. Nanomedicine. 2021;34: 102381.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu P, Ma B, Hung CT, Li W, Zhao D. Spherical mesoporous supplies from single to multilevel architectures. Acc Chem Res. 2019;52:2928–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Lei C, Wang Y, Yu C. Dendritic mesoporous nanoparticles: construction, synthesis and properties. Angew Chem Int Ed Engl. 2022;61: e202112752.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Zhang M, Tune H, Yu C. Silica-based nanoparticles for biomedical functions: from nanocarriers to biomodulators. Acc Chem Res. 2020;53:1545–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • AhmadNor Y, Niu Y, Karmakar S, Zhou L, Xu C, Zhang J, Zhang H, Yu M, Mahony D, Mitter N, Cooper MA, Yu C. Shaping nanoparticles with hydrophilic compositions and hydrophobic properties as nanocarriers for antibiotic supply. ACS Cent Sci. 2015;1:328–34.

    Article 
    CAS 

    Google Scholar
     

  • Tune H, Ahmad Nor Y, Yu M, Yang Y, Zhang J, Zhang H, Xu C, Mitter N, Yu C. Silica nanopollens improve adhesion for long-term bacterial inhibition. J Am Chem Soc. 2016;138:6455–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rastegari E, Hsiao YJ, Lai WY, Lai YH, Chien Y. An replace on mesoporous silica nanoparticle functions in nanomedicine. Pharm. 2021;13:1067.

    CAS 

    Google Scholar
     

  • Chen Y, Gao Y, Chen Y, Liu L, Peng Q. Nanomaterials-based photothermal remedy and its potentials in antibacterial remedy. J Management Rele. 2020;328:251–62.

    Article 
    CAS 

    Google Scholar
     

  • Rahaman SN, Ayyadurai N, Anandasadagopan SK. Synergistic impact of vancomycin and gallic acid loaded MCM-41 mesoporous silica nanoparticles for septic arthritis administration. J Drug Deliv Sci Tec. 2023;82: 104353.

    Article 
    CAS 

    Google Scholar
     

  • Liu SY, Liu LL, Wang YH, Ouyang YX, Li N, Hu ZX, Chen SW. Inorganic-organic composite membranes containing amino-functionalized mesoporous silica loaded phosphotungstic acid with enhanced gasoline cell efficiency and stability. Int J Hydrogen Energ. 2023;48:9436–50.

    Article 
    CAS 

    Google Scholar
     

  • Han W, Qiu SF, Chen JF, Zhong XM, Hao L, Chen HY, Zhou XH, Zhou HJ. One-pot synthesis of mesoporous silica-supported nano-metal oxide composites with enhanced antibacterial properties. Mater Chem Phys. 2022;290: 106618.

    Article 

    Google Scholar
     

  • Haffner SM, Parra-Ortiz E, Malmsten M. Membrane interactions of virus-like mesoporous silica nanoparticles as carriers of antimicrobial peptides. Eur Biophys J Biophy. 2021;50:152.


    Google Scholar
     

  • Stefanie M, Justin R, Nodwell. Actinorhodin is a redox-active antibiotic with a posh mode of motion towards Gram-positive cells. Mol Microbiol. 2017;4:597.


    Google Scholar
     

  • Wu C, Chang J. Mesoporous bioactive glasses: construction traits, drug/progress issue supply and bone regeneration utility. Interface Focus. 2012;2:292–306.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alandiyjany MN, Abdelaziz AS, Abdelfattah-Hassan A, Hegazy WAH, Hassan AA, Elazab ST, Mohamed EAA, El-Shetry ES, Saleh AA, ElSawy NA, Ibrahim D. Novel in vivo evaluation of antimicrobial efficacy of ciprofloxacin loaded mesoporous silica nanoparticles towards salmonella typhimurium an infection. Pharm. 2022;15:15030357.


    Google Scholar
     

  • Wang Y, Liu Y, Tian H, Zhai Y, Pan N, Yin M, Ren X, Liang J. Preparation and characterization of antibacterial mesoporous sieves with N-halamine. Colloid Polym Sci. 2017;295:1897–904.

    Article 
    CAS 

    Google Scholar
     

  • Sharma A, Dubey A, Kurchania R. Vinyl carbazole (VC) functionalized mesoporous silica polymer nanocomposites (SBA/VC) for the antibacterial exercise research. J Porous Mater. 2016;23:851–5.

    Article 
    CAS 

    Google Scholar
     

  • Martínez-Carmona M, Izquierdo-Barba I, Colilla M, Vallet-Regí M. Concanavalin A-targeted mesoporous silica nanoparticles for an infection remedy. Acta Biomater. 2019;96:547–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Carmona M, Izquierdo-Barba I, Colilla M, Vallet-Regí M. Combos of antibiotics and nonantibiotic medication improve antimicrobial efficacy. Na Chem Bio. 2011;6:348.


    Google Scholar
     

  • Gounani Z, Asadollahi MA, Pedersen JN, Lyngso J, Skov Pedersen J, Arpanaei A, Meyer RL. Mesoporous silica nanoparticles carrying a number of antibiotics present enhanced synergistic impact and improved biocompatibility. Coll Surf B Biointerf. 2019;175:498–508.

    Article 
    CAS 

    Google Scholar
     

  • Najafi A, Khosravian P, Validi M, Porgham Daryasari M, Drees F, Gholipour A. Antimicrobial motion of mesoporous silica nanoparticles loaded with cefepime and meropenem individually towards multidrug-resistant (MDR) Acinetobacter baumannii. J Drug Deliv Sci Tec. 2021;65: 102757.

    Article 
    CAS 

    Google Scholar
     

  • Morones JR, Elechiguerra JL, Camacho A, Holt Ok, Kouri JB, Ramírez J, Yacaman MJ. The bactericidal impact of silver nanoparticles. Nanotechnology. 2005;10:2346.

    Article 

    Google Scholar
     

  • Rai M, Yadav A, Gade A. Silver nanoparticles as a brand new technology of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune Y, Cai L, Tian Z, Wu Y, Chen J. Phytochemical curcumin-coformulated, silver-decorated melanin-like polydopamine/mesoporous silica composites with improved antibacterial and chemotherapeutic results towards drug-resistant most cancers cells. ACS Omega. 2020;5:15083–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tasia W, Lei C, Cao Y, Ye Q, He Y, Xu C. Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles. Nanoscale. 2020;12:2328–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Ding X, Chen Y, Guo M, Zhang Y, Guo X, Gu H. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the remedy of drug-resistant infections. Biomaterials. 2016;101:207–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuentes KM, Onna D, Rioual T, Huvelle MAL, Britto F, Simian M, Sanchez-Dominguez M, Soler-Illia GJAA, Bilmes SA. Copper upcycling by hierarchical porous silica spheres functionalized with branched polyethylenimine: antimicrobial and catalytic functions. Micropor Mesopor Mat. 2021;327: 111397.

    Article 

    Google Scholar
     

  • Laskowski L, Laskowska M, Fijalkowski Ok, Piech H, Jelonkiewicz J, Jaskulak M, Gnatowski A, Dulski M. New class of antimicrobial brokers: SBA-15 silica containing anchored copper ions. J Nanomater. 2017;2017:1–12.

    Article 

    Google Scholar
     

  • Burdon RCF, Junker RR, Douglas SG, Parachnowitsch AL. Micro organism colonising penstemon digitalis present risky and tissue-specific responses to a pure focus vary of the floral risky linalool. Parachnowitsch Chemoecol. 2019;1:11.


    Google Scholar
     

  • Díaz-García D, Ardiles P, Prashar S, Rodríguez-Diéguez A, Páez P, Gómez-Ruiz S. Preparation and examine of the antibacterial functions and oxidative stress induction of copper maleamate-functionalized mesoporous silica nanoparticles. Pharm. 2019;11: 110912.


    Google Scholar
     

  • Xu C, Shan Y, Bilal M, Xu B, Cao L, Huang Q. Copper ions chelated mesoporous silica nanoparticles through dopamine chemistry for managed pesticide launch regulated by coordination bonding. Chem Eng J. 2020;395: 123982.

    Article 

    Google Scholar
     

  • Jiang S, Lin Ok, Cai M. ZnO nanomaterials: present developments in antibacterial mechanisms and functions. Entrance Chem. 2020;8:580.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sirelkhatim A, Mahmud S, Seeni N, Kaus NHM, Ann LC, Bakhori KM, Hasan H, Mohamad D. Evaluate on zinc oxide nanoparticles: antibacterial exercise and toxicity mechanism. Springer Open Selection. 2015;3:219.


    Google Scholar
     

  • Sathiya SM, Okram GS, Dhivya SM, Manivannan G, Rajan MJ. Interplay of chitosan/Zinc oxide nanocomposites and their antibacterial actions with Escherichia coli. Mater At the moment Proc. 2016;3:3855–60.

    Article 

    Google Scholar
     

  • Bhuyan T, Mishra Ok, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic functions. Mater Sci Semicond Course of. 2015;32:55.

    Article 
    CAS 

    Google Scholar
     

  • Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf A. 2011;374:1–8.

    Article 
    CAS 

    Google Scholar
     

  • Wen H, Zhou X, Shen Z, Peng Z, Chen H, Hao L, Zhou H. Synthesis of ZnO nanoparticles supported on mesoporous SBA-15 with coordination impact -assist for anti-bacterial evaluation. Colloids Surf B Biointerfaces. 2019;181:285–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donnadio A, Cardinali G, Latterini L, Roscini L, Ambrogi V. Nanostructured zinc oxide on silica floor: preparation, physicochemical characterization and antimicrobial exercise. Mater Sci Eng C Mater Biol Appl. 2019;104: 109977.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant micro organism utilizing nanomaterials. Chem Soc Rev. 2019;48:415–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune Y, Solar Q, Luo J, Kong Y, Pan B, Zhao J, Wang Y, Yu C. Cationic and anionic antimicrobial brokers co-templated mesostructured silica nanocomposites with a spiky nanotopology and enhanced biofilm inhibition efficiency. Nanomicro Lett. 2022;14:83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James T, Shujing W, Ka W, Wei T. Antimicrobial peptides from crops. Pharm. 2015;8:711–57.


    Google Scholar
     

  • Holfeld L, Knappe D, Hoffmann R. Proline-rich antimicrobial peptides present a long-lasting post-antibiotic impact on enterobacteriaceae and Pseudomonas aeruginosa. J of Antimicrobial Chemother. 2018;4:933.

    Article 

    Google Scholar
     

  • Xiang DJ, Yu Ok, Xing JP, Jun Y, Qi O, Chun XL. Research of the drug resistance response of delicate and drug-resistant strains in a microfluidic system. Integrative Biol. 2014;6:143–51.

    Article 

    Google Scholar
     

  • Galdiero E, Lombardi L, Falanga A, Libralato G, Guida M, Carotenuto R. Biofilms: novel methods based mostly on antimicrobial peptides. Pharm. 2019;11:322.

    CAS 

    Google Scholar
     

  • Ma B, Chen Y, Hu G, Zeng Q, Lv X, Oh DH, Fu X, Jin Y. Ovotransferrin antibacterial peptide coupling mesoporous silica nanoparticle as an efficient antibiotic supply system for treating bacterial an infection in vivo. ACS Biomater Sci Eng. 2022;8:109–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haffner SM, Parra-Ortiz E, Browning KL, Jorgensen E, Skoda MWA, Montis C, Li X, Berti D, Zhao D, Malmsten M. Membrane interactions of virus-like mesoporous silica nanoparticles. ACS Nano. 2021;15:6787–800.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao G, Chen Y, He Y, Chen F, Gong Y, Chen S, Xu Y, Su Y, Wang C, Wang J. Succinylated casein-coated peptide-mesoporous silica nanoparticles as an antibiotic towards intestinal bacterial an infection. Biomater Sci. 2019;7:2440–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing W, Yao ZK. Nanomaterials with a photothermal impact for antibacterial actions: an summary. Nanoscale. 2019;11:8680.

    Article 

    Google Scholar
     

  • Naskar A, Kim KS. Associates towards the foe: synergistic photothermal and photodynamic remedy towards bacterial infections. Pharm. 2023;15:15041116.


    Google Scholar
     

  • Qiao A, Yao Y, Yin MH, Yan DP, Yan LJ, Luo LB. Gold nanorods with floor charge-switchable actions for enhanced photothermal killing of micro organism and eradication of biofilm. J Mate Chem B. 2020;8:3138.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Supramolecular antibacterial supplies for combatting antibiotic resistance. Adv Mater. 2019;31:1805092.


    Google Scholar
     

  • Yuan Z, Tao B, He Y, Liu J, Cai Ok. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property through intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials. 2019;217: 119290.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang G, Yang Y, Shi J, Yao X, Chu PK. Close to-infrared gentle ii-assisted fast biofilm elimination platform for bone implants at delicate temperature. Biomaterials. 2020;269: 120634.

    Article 
    PubMed 

    Google Scholar
     

  • Tan L, Li J, Liu X, Cui Z, Yang X, Zhu S, Li Z, Yuan X, Zheng Y, Yeung KWK. Speedy biofilm eradication on bone implants utilizing crimson phosphorus and near-infrared gentle. Adv Mat. 2018;30:1801808.

    Article 

    Google Scholar
     

  • García A, González B, Harvey C, Izquierdo-Barba I, Vallet-Regí M. Efficient discount of biofilm by means of photothermal remedy by gold core@shell based mostly mesoporous silica nanoparticles. Micropor Mesopor Mat. 2021;328: 111489.

    Article 

    Google Scholar
     

  • Cao C, Ge W, Yin J, Yang D, Wang W, Tune X, Hu Y, Yin J, Dong X. Mesoporous Silica supported silver-bismuth nanoparticles as photothermal brokers for pores and skin an infection synergistic antibacterial remedy. Small. 2020;16: e2000436.

    Article 
    PubMed 

    Google Scholar
     

  • Wu S, Li A, Zhao X, Zhang C, Yu B, Zhao N, Xu FJ. Silica-coated gold-silver nanocages as photothermal antibacterial brokers for mixed anti-infective remedy. ACS Appl Mater Interfaces. 2019;11:17177–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Zhang Y, You W, Su J, Yu S, Dai T, Huang Y, Chen X, Tune X, Chen Z. Close to-infrared-excited upconversion photodynamic remedy of extensively drug-resistant Acinetobacter baumannii based mostly on lanthanide nanoparticles. Nanoscale. 2020;12:13948–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar J, Zhang Y, Su J, Dai T, Chen J, Zhang L, Wang H, Liu W, Huang M, Chen Z. Naftifine enhances photodynamic remedy towards Staphylococcus aureus by inhibiting staphyloxanthin expression. Dyes Pigm. 2020;179: 108392.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Chen L, Wang Y, Tune X, Li Ok, Yan X, Yu L, He Z. Nanomaterial-based methods in antimicrobial functions: progress and views. Nano Res. 2021;14:4417–41.

    Article 
    CAS 

    Google Scholar
     

  • Novohradsky V, Rovira A, Hally C, Galindo A, Vigueras G, Gandioso A, Svitelova M, Bresoli-Obach R, Kostrhunova H, Markova H, Kasparkova M, Nonell S, Ruiz J, Brabec V, Marchan V. In the direction of novel photodynamic anticancer brokers producing superoxide anion radicals: a cyclometalated iriii advanced conjugated to a far-red emitting coumarin. Angew Chem Int Ed. 2019;58:6311.

    Article 
    CAS 

    Google Scholar
     

  • Almeida A, Faustino MAF, Tome JPC. Photodynamic inactivation of micro organism: discovering the efficient targets. Future Med Chem. 2015;7:1221–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, He M, Guo R, Fang Z, Kang S, Ma Z, Dong M, Wang W, Cui L. Ultrastable metal-free near-infrared-driven photocatalysts for H2 manufacturing based mostly on protonated 2D g-C3N4 sensitized with Chlorin e6. Appl Catal B. 2020;260: 118317.

    Article 

    Google Scholar
     

  • Yan C, Shao X, Shu Q, Teng Y, Qiao Y, Guan P, Hu X, Wang C. Chitosan modified ultra-thin hole nanoparticles for photosensitizer loading and enhancing photodynamic antibacterial actions. Int J Biol Macromol. 2021;186:839–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Planas O, Bresoli-Obach R, Nos J, Gallavardin T, Ruiz-Gonzalez R, Agut M, Nonell S. Synthesis, photophysical characterization, and photoinduced antibacterial exercise of methylene blue-loaded amino- and mannose-targeted Mesoporous silica nanoparticles. Molecules. 2015;20:6284–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Lu S, Liu W, Dai T, Ke J, Li X, Li R, Zhang Y, Chen Z, Chen X. Synergistic lysozyme-photodynamic remedy towards resistant micro organism based mostly on an clever upconversion nanoplatform. Angew Chem Int Ed Engl. 2021;60:19201–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gehring J, Trepka B, Klinkenberg N, Bronner H, Schleheck D, Polarz S. Daylight-triggered nanoparticle synergy: teamwork of reactive oxygen species and nitric oxide launched from mesoporous organosilica with superior antibacterial exercise. J Am Chem Soc. 2016;138:3076–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zampini G, Planas O, Marmottini F, Gulías O, Agut M, Nonell S, Latterini L. Morphology results on singlet oxygen manufacturing and bacterial photoinactivation effectivity by completely different silica-protoporphyrin IX nanocomposites. RSC Adv. 2017;7:14422–9.

    Article 
    CAS 

    Google Scholar
     

  • Maleki A, Shahbazi MA, Alinezhad V, Santos HA. The progress and prospect of zeolitic imidazolate frameworks in most cancers remedy, antibacterial exercise, and biomineralization. Adv Healthcare Mater. 2020;9:2000248.

    Article 
    CAS 

    Google Scholar
     

  • Solar J, Fan Y, Zhang P, Zhang X, Zhou Q, Zhao J, Ren L. Self-enriched mesoporous silica nanoparticle composite membrane with outstanding photodynamic antimicrobial performances. J Colloid Interface Sci. 2020;559:197–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Solar X, Dong M, Zhang H, Wang J, Bu T, Zhao S, Wang L. NIR-regulated dual-functional silica nanoplatform for infected-wound remedy through synergistic sterilization and anti-oxidation. Colloids Surf B Biointerfaces. 2022;213: 112414.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao CY, Xiang YM, Liu XM, Zheng YF, Wu SL. Native photothermal/photodynamic synergistic remedy by disrupting bacterial membrane to speed up reactive oxygen species permeation and protein leakage. ACS Appl Mater Interfaces. 2019;19:17902.

    Article 

    Google Scholar
     

  • Vankayala R, Hwang KC. Close to-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an rising paradigm for most cancers remedy. Adv mater. 2018;23:1706320.

    Article 

    Google Scholar
     

  • Ss A, He SB, Yw A, Xc A, Jing X, Nz A, Jian SA. Biomedical utility of graphene: From drug supply, tumor remedy, to theranostics. Colloids Surf, B. 2020;185: 110596.

    Article 

    Google Scholar
     

  • Zhang Y, Yan H, Tang J, Li P, Su R, Zhong H, Su W. Twin-mode antibacterial core-shell gold nanorod@mesoporous-silica/curcumin nanocomplexes for environment friendly photothermal and photodynamic remedy. J Photochem Photobio A: Chem. 2022;425: 113722.

    Article 
    CAS 

    Google Scholar
     

  • Zhang B, Yan H, Meng Z, Li P, Jiang X, Wu Z, Xiao J-A, Su W. Photodynamic and photothermal Ce6-modified gold nanorod as a potent different candidate for improved photoinactivation of micro organism. ACS Appl Bio Mater. 2021;9:6742.

    Article 

    Google Scholar
     

  • Liu ZW, Zhao XY, Yu BG, Zhao NN, Zhang C, Xu FJ. Tough carbon-iron oxide nanohybrids for near-infrared-ii light-responsive synergistic antibacterial remedy. ACS Nano. 2021;4:7482–90.

    Article 

    Google Scholar
     

  • Li X, Liang MM, Jiang SL, Cao SY, Li SH, Gao YB, Liu J, Bai Q, Sui N, Zhu ZL. Pomegranate-like CuO2@SiO2 nanospheres as H2O2 self-supplying and strong oxygen mills for enhanced antibacterial exercise. ACS Appl Mater Interfaces. 2021;13:22169–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan Z, Lin C, He Y, Tao B, Chen M, Zhang J, Liu P, Cai Ok. Close to-infrared light-triggered nitric-oxide-enhanced photodynamic remedy and low-temperature photothermal remedy for biofilm elimination. ACS Nano. 2020;3:3546–62.

    Article 

    Google Scholar
     

  • Qi ML, Ren X, Li W, Solar Y, Solar XL, Li CY, Yu SY, Xu L, Zhou YM, Tune SY, Dong B, Wang L. NIR responsive nitric oxide nanogenerator for enhanced biofilm eradication and irritation immunotherapy towards periodontal illnesses. Nano At the moment. 2022;43: 101447.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Yang Y, Shi Y, Tune H, Yu C. Antibioticree methods: antibiotic ree antibacterial methods enabled by nanomaterials: progress and perspective. Advert Mater. 2020;32:1904106.

    Article 
    CAS 

    Google Scholar
     

  • Hasan J, Crawford RJ, Ivanova EP. Antibacterial surfaces: the hunt for a brand new technology of biomaterials. Traits Biotechnol. 2013;31:295–304.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Lobbe C, Crawford RJ. Pure bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small. 2012;8:2489–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Phong Nguyen TH, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, Crawford RJ, Ivanova EP. Biophysical mannequin of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J. 2013;104:835–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanova EP, Hasan J, Webb HK, Gervinskas G, Juodkazis S, Truong VK, Wu AH, Lamb RN, Baulin VA, Watson GS, Watson JA, Mainwaring DE, Crawford RJ. Bactericidal exercise of black silicon. Nat Commun. 2013;4:2838.

    Article 
    PubMed 

    Google Scholar
     

  • Qiao Y, Yang C, Coady DJ, Ong ZY, Hedrick JL, Yang YY. Extremely dynamic biodegradable micelles able to lysing gram-positive and gram-negative bacterial membrane. Biomaterials. 2012;33:1146–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez B, Colilla M, Diez J, Pedraza D, Guembe M, Izquierdo-Barba I, Vallet-Regi M. Mesoporous silica nanoparticles embellished with polycationic dendrimers for an infection remedy. Acta Biomater. 2018;68:261–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for world infectious illnesses. Nat Nanotechnol. 2021;16:369–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karaman D, Ercan UK, Bakay E, Topaloğlu N, Rosenholm JM. Evolving applied sciences and techniques for combating antibacterial resistance within the introduction of the postantibiotic period. Adv Funct Mater. 2020;30:1908783.

    Article 

    Google Scholar
     

  • Rohde M. The gram-positive bacterial cell wall. Microbiol Spectr. 2019. https://doi.org/10.1128/microbiolspec.GPP3-0044-2018.

    Article 
    PubMed 

    Google Scholar
     

  • Rahlwes KC, Sparks IL, Morita YS. Cell partitions and membranes of actinobacteria. Subcell Biochem. 2019;92:417–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu J, Tang G, Tang J, Yang J, Zhou Z, Gao Y, Chen X, Tian Y, Li Y, Li J, Cao Y. Functionalized silver nanocapsules with improved antibacterial exercise utilizing silica shells modified with quaternary ammonium polyethyleneimine as a bacterial cell-targeting agent. J Agric Meals Chem. 2021;69:6485–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mintzer MA, Dane EL, O’Toole GA, Grinstaff MW. Exploiting dendrimer multivalency to fight rising and re-emerging infectious illnesses. Mol Pharm. 2012;9:342–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu S, Huang Y, Yan J, Li Y, Wang J, Yang YY, Yuan P, Ding X. Bacterial outer membrane-coated mesoporous silica nanoparticles for focused supply of antibiotic rifampicin towards gram-negative bacterial an infection in vivo. Adv Practical Mater. 2021;31:2103442.

    Article 
    CAS 

    Google Scholar
     

  • Hao N, Chen X, Jeon S, Yan M. Carbohydrate-conjugated hole Oblate Mesoporous Silica nanoparticles as nanoantibiotics to focus on mycobacteria. Adv Healthc Mater. 2015;4:2797–801.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kavruk M, Celikbicak O, Ozalp VC, Borsa BA, Hernandez FJ, Bayramoglu G, Salih B, Arica MY. Antibiotic loaded nanocapsules functionalized with aptamer gates for focused destruction of pathogens. Chem Commun. 2015;51:8492–5.

    Article 
    CAS 

    Google Scholar
     

  • Sudagidan M, Yildiz G, Onen S, Al R, Temiz ŞN, Yurt MNZ, Tasbasi BB, Acar EE, Coban A, Aydin A, Dursun AD, Ozalp VC. Focused mesoporous silica nanoparticles for improved inhibition of disinfectant resistant Listeria monocytogenes and decrease environmental air pollution. J Hazardous Mater. 2021;418: 126364.

    Article 
    CAS 

    Google Scholar
     

  • Xu T, Li J, Zhang S, Jin Y, Wang R. Integration of analysis and remedy within the detection and kill of S aureus in the entire blood. Biosens Bioelectron. 2019;142: 111507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Q, Lu H, Wang X, Zhang Y, Zhou N. Functionalized hole mesoporous silica for detection of Staphylococcus aureus and sterilization. J Envi Chem Eng. 2021;9: 105982.


    Google Scholar
     

  • Gao X, Li L, Cai X, Huang Q, Cheng Y. Focusing on nanoparticles for analysis and remedy of bone tumors: alternatives and challenges. Biomaterials. 2020;265: 120404.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Y, Yu P, Peng X, Huang Q, Li J. Hexapeptide-conjugated calcitonin for focused remedy of osteoporosis. J Management Launch. 2019;304:39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie B, Huo S, Qu X, Guo J, Liu X, Hong Q, Wang Y, Yang J, Yue B. Bone an infection web site concentrating on nanoparticle-antibiotics supply car to boost remedy efficacy of orthopedic implant associated an infection. Bioact Mater. 2022;16:134–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capeletti LB, Oliveira JFA, Loiola LMD, Galdino FE, Santos DES, Soares TA, Freitas RO, Cardoso MB. Gram-negativebacteriatargetingmediatedbycarbohydrate-carbohydrateinteractionsinducedbysurface-modifiednanoparticles. Adv Funct Mater. 2019;29:1904216.

    Article 
    CAS 

    Google Scholar
     

  • Zhou J, Jayawardana KW, Kong N, Ren Y, Hao N, Yan M, Ramstrom O. Trehalose-conjugated, photofunctionalized mesoporous silica nanoparticles for environment friendly supply of isoniazid into mycobacteria. ACS Biomater Sci Eng. 2015;1:1250–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies D. Understanding biofilm resistance to antibacterial brokers. Nat Rev Drug Discov. 2019;29:114–22.


    Google Scholar
     

  • Fulaz S, Devlin H, Vitale S, Quinn L, O’Gara J, Casey E. Tailoring nanoparticle-biofilm interactions to extend the efficacy of antimicrobial brokers towards Staphylococcus aureus. Inter J Nanomed. 2020;15:4779–91.

    Article 
    CAS 

    Google Scholar
     

  • Martinez-Carmona M, Izquierdo-Barba I, Colilla M, Vallet-Regi M. Concanavalin a-targeted Mesoporous silica nanoparticles for an infection remedy. Acta Biomater. 2021;96:547.

    Article 

    Google Scholar
     

  • O’Gara JP, Zapotoczna M, O’Neill E, Humphreys H, Hogan S. Potential use of focused enzymatic brokers within the remedy of Staphylococcus aureus biofilm-related infections. J Hosp Infect. 2017;96:177.

    Article 
    PubMed 

    Google Scholar
     

  • Millenbaugh N, Watters C, Burton T, Kirui D. Enzymatic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma. An infection & Drug Resistance. 2016;9:71.

    Article 

    Google Scholar
     

  • Devlin H, Fulaz S, Hiebner DW, O’Gara JP, Casey E. Enzyme-functionalized Mesoporous Silica Nanoparticles to Goal Staphylococcus aureus and disperse biofilms. Int J Nanomed. 2021;16:1929–42.

    Article 

    Google Scholar
     

  • Li Y, Chi YQ, Yu CH, Xie Y, Xia MY, Zhang CL, Han X, Peng Q. Drug-free and non-crosslinked chitosan scaffolds with environment friendly antibacterial exercise towards each gram-negative and gram-positive bacteria-sciencedirect. Carbohyd Polym. 2020;241: 116386.

    Article 
    CAS 

    Google Scholar
     

  • Zhao N, Cai R, Zhang Y, Wang X, Zhou N. A pH-Gated functionalized hole Mesoporous Silica supply system for photodynamic sterilization in Staphylococcus aureus biofilm. Supplies. 2022;15:2815.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wynn TA, Murray PJ. Protecting and pathogenic features of macrophage subsets. Nature Rev Immunol. 2013;11:723.


    Google Scholar
     

  • Sophie H, Angela M, Kathryn G, Laura M. Internalization of salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343:204.

    Article 

    Google Scholar
     

  • Slattery A, Victorsen AH, Brown A, Hillman Ok, Phillips GJ. Isolation of extremely persistent mutants of salmonella enterica serovar typhimurium reveals a brand new toxin-antitoxin module. J of Bacteriology. 2013;195:647–57.

    Article 
    CAS 

    Google Scholar
     

  • Das P, Lahiri A, Lahiri A, Chakravortty D. Modulation of the arginase pathway within the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6: e1000899.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mudakavi RJ, Vanamali S, Chakravortty D, Raichur AM. Improvement of arginine based mostly nanocarriers for concentrating on and remedy of intracellularSalmonella. RSC Adv. 2017;7:7022–32.

    Article 
    CAS 

    Google Scholar
     

  • Qi G, Li L, Yu F, Wang H. Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive micro organism over macrophage-like cells. ACS Appl Mater Interfaces. 2013;5:10874–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nash T, Allison AC, Harington JS. Physico-chemical properties of silica in relation to its toxicity. Nature. 1966;210:259–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashley CS, Brinker CJ, Zhang H, Dunphy DR, Jiang X, Meng H, Solar B, Tarn D, Xue M, Wang X. Processinng pathway dependence of amorphous silica nanoparticle toxicity-colloidal versus pyrolytic. J Amer Chem Soc. 2012;38:15790.


    Google Scholar
     

  • Yu T, Malugin A, Ghandehari H. Influence of silica nanoparticle design on mobile toxicity and hemolytic exercise. ACS Nano. 2011;7:5717.

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments