Sunday, August 20, 2023
HomeNanotechnologyLarge spin Corridor impact in AB-stacked MoTe2/WSe2 bilayers

Large spin Corridor impact in AB-stacked MoTe2/WSe2 bilayers


  • Sinova, J., Valenzuela, S. O., Wunderlich, J., Again, C. H. & Jungwirth, T. Spin Corridor results. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article 

    Google Scholar
     

  • Rojas-Sánchez, J.-C. et al. Spin to cost conversion at room temperature by spin pumping into a brand new kind of topological insulator: α-Sn movies. Phys. Rev. Lett. 116, 096602 (2016).

    Article 

    Google Scholar
     

  • Li, C. H. et al. Electrical detection of charge-current-induced spin polarization resulting from spin-momentum locking in Bi2Se3. Nat. Nanotechnol. 9, 218–224 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jungwirth, T., Wunderlich, J. & Olejník, Ok. Spin Corridor impact units. Nat. Mater. 11, 382–390 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kato, Y. Ok., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Statement of the spin Corridor impact in semiconductors. Science 306, 1910–1913 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental statement of the spin-Corridor impact in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Spin-torque switching with the large spin Corridor impact of tantalum. Science 336, 555–558 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Present-induced switching of perpendicularly magnetized magnetic layers utilizing spin torque from the spin Corridor impact. Phys. Rev. Lett. 109, 096602 (2012).

    Article 

    Google Scholar
     

  • Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and purposes. Rev. Mod. Phys. 76, 323–410 (2004).

    Article 

    Google Scholar
     

  • Gibbons, J. D., MacNeill, D., Buhrman, R. A. & Ralph, D. C. Reorientable spin route for spin present produced by the anomalous Corridor impact. Phys. Rev. Appl. 9, 064033 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Corridor impact. Nat. Electron. 1, 120–123 (2018).

    Article 

    Google Scholar
     

  • Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition steel dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic second and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article 

    Google Scholar
     

  • Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article 

    Google Scholar
     

  • Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and different Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article 

    Google Scholar
     

  • Mak, Ok. F., Xiao, D. & Shan, J. Mild–valley interactions in 2D semiconductors. Nat. Photonics 12, 451–460 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J., Wang, Z., Xie, H., Mak, Ok. F. & Shan, J. Valley magnetoelectricity in single-layer MoS2. Nat. Mater. 16, 887–891 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mak, Ok. F., McGill, Ok. L., Park, J. & McEuen, P. L. The valley Corridor impact in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tschirhart, C. L. et al. Intrinsic spin Corridor torque in a moiré Chern magnet. Nat. Phys. 19, 807–813 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Andrei, E. Y. et al. The marvels of moiré supplies. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. & Dai, X. Orbital magnetic states in moiré graphene programs. Nat. Rev. Phys. 3, 367–382 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mak, Ok. F. & Shan, J. Semiconductor moiré supplies. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Devakul, T. & Fu, L. Quantum anomalous Corridor impact from inverted cost switch hole. Phys. Rev. X 12, 021031 (2022).

    CAS 

    Google Scholar
     

  • Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition steel dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118, e2112673118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rademaker, L. Spin-orbit coupling in transition steel dichalcogenide heterobilayer flat bands. Phys. Rev. B 105, 195428 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pan, H., Xie, M., Wu, F. & Das Sarma, S. Topological phases in AB-stacked MoTe2/WSe2: Z2 topological insulators, Chern insulators, and topological cost density waves. Phys. Rev. Lett. 129, 056804 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Corridor impact. Phys. Rev. Lett. 95, 146802 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kane, C. L. & Mele, E. J. Quantum spin Corridor impact in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Fengcheng, W., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition steel dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article 

    Google Scholar
     

  • Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, Ok. F. & Legislation, Ok. T. Valley-polarized quantum anomalous Corridor state in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Lett. 128, 026402 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mai, P., Zhao, J., Feldman, B. E. & Phillips, P. W. 1/4 is the brand new 1/2: Interplay-induced unification of quantum anomalous and spin Corridor results. Preprint at https://doi.org/10.48550/arXiv.2210.11486 (2022).

  • Zhao, W. et al. Realization of the Haldane Chern insulator in a moiré lattice. Preprint at http://arxiv.org/sabs/2207.02312 (2022).

  • Li, T. et al. Quantum anomalous Corridor impact from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tao, Z. et al. Valley-coherent quantum anomalous Corridor state in AB-stacked MoTe2/WSe2 bilayers. Preprint at https://doi.org/10.48550/arXiv.2208.07452 (2022).

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Mild-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. et al. Steady Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lau, C. N., Bockrath, M. W., Mak, Ok. F. & Zhang, F. Reproducibility within the fabrication and physics of moiré supplies. Nature 602, 41–50 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, S.-B., Solar, S.-H., Zhou, M., Zhang, D. & Chang, Ok. Present-induced spin polarization in Janus WSSe monolayer. Phys. Rev. B 107, 125426 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yu, S.-B., Zhou, M., Zhang, D. & Chang, Ok. Spin Corridor impact within the monolayer Janus compound MoSSe enhanced by Rashba spin-orbit coupling. Phys. Rev. B 104, 075435 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J., Mak, Ok. F. & Shan, J. Electrical management of the valley Corridor impact in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Vila, M. et al. Low-symmetry topological supplies for giant charge-to-spin interconversion: the case of transition steel dichalcogenide monolayers. Phys. Rev. Res. 3, 043230 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Music, P. et al. Coexistence of enormous standard and planar spin Corridor impact with lengthy spin diffusion size in a low-symmetry semimetal at room temperature. Nat. Mater. 19, 292–298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bi, Z. & Fu, L. Excitonic density wave and spin-valley superfluid in bilayer transition steel dichalcogenide. Nat. Commun. 12, 642 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Beconcini, M., Taddei, F. & Polini, M. Nonlocal topological valley transport at massive valley Corridor angles. Phys. Rev. B 94, 121408 (2016).

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments