Qi, L., Ruan, S. C. & Zeng, Y. J. Assessment on latest developments in 2D ferroelectrics: theories and purposes. Adv. Mater. 33, 2005098 (2021).
Chang, Okay. et al. Discovery of strong in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).
Liu, F. C. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).
Fei, Z. Y. et al. Ferroelectric switching of a two-dimensional steel. Nature 560, 336 (2018).
Li, L. & Wu, M. H. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).
Yang, Q., Wu, M. H. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).
Ferreira, F., Enaldiev, V. V., Fal’ko, V. I. & Magorrian, S. J. Weak ferroelectric cost switch in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 13422 (2021).
Zheng, Z. et al. Unconventional ferroelectricity in moire heterostructures. Nature 588, 71–76 (2020).
Yasuda, Okay., Wang, X. R., Watanabe, Okay., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458 (2021).
Wang, X. R. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition steel dichalcogenides. Nat. Nanotechnol. 17, 367 (2022).
Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390 (2022).
Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462 (2021).
Liu, Y., Liu, S., Li, B. C., Yoo, W. J. & Hone, J. Figuring out the transition order in a man-made ferroelectric van der Waals heterostructure. Nano. Lett. 22, 1265–1269 (2022).
Brown, B. E. Crystal constructions of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268 (1966).
Fei, Z. Y. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677 (2017).
Wu, S. F. et al. Commentary of the quantum spin Corridor impact as much as 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).
Zhao, W. J. et al. Willpower of the spin axis in quantum spin corridor insulator candidate monolayer WTe2. Phys. Rev. X 11, 041034 (2021).
Sakai, H. et al. Crucial enhancement of thermopower in a chemically tuned polar semimetal MoTe2. Sci. Adv. 2, 11 (2016).
Sodemann, I. & Fu, L. Quantum nonlinear Corridor impact induced by Berry curvature dipole in time-reversal invariant supplies. Phys. Rev. Lett. 115, 216806 (2015).
Ma, Q. et al. Commentary of the nonlinear Corridor impact beneath time-reversal-symmetric situations. Nature 565, 337 (2019).
Kang, Okay. F., Li, T. X., Sohn, E., Shan, J. & Mak, Okay. F. Nonlinear anomalous Corridor impact in few-layer WTe2. Nat. Mater. 18, 324 (2019).
Du, Z. Z., Lu, H. Z. & Xie, X. C. Nonlinear Corridor results. Nat. Rev. Phys. 3, 744–752 (2021).
Xu, S. Y. et al. Electrically switchable Berry curvature dipole within the monolayer topological insulator WTe2. Nat. Phys. 14, 900 (2018).
Qian, X. F., Liu, J. W., Fu, L. & Li, J. Quantum spin Corridor impact in two-dimensional transition steel dichalcogenides. Science 346, 1344–1347 (2014).
Chen, Z. S. et al. Tunable digital construction in twisted WTe2/WSe2 heterojunction bilayer. AIP Adv. 12, 045315 (2022).
Xie, Y. et al. Gate-tunable van der Waals heterostructure based mostly on semimetallic WTe2 and semiconducting MoTe2. Appl. Phys. Lett. 118, 133103 (2021).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
Balents, L., Dean, C. R., Efetov, D. Okay. & Younger, A. F. Superconductivity and powerful correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Mak, Okay. F. & Shan, J. Semiconductor moiré supplies. Nat. Nanotechnol. 17, 686–695 (2022).
Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).
Andrei, E. Y. et al. The marvels of moiré supplies. Nat. Rev. Mater. 6, 201–206 (2021).
Liu, Y. Y., Stradins, P. & Wei, S. H. Van der Waals steel–semiconductor junction: weak Fermi stage pinning permits efficient tuning of Schottky barrier. Sci. Adv. 2, 4 (2016).
Lv, H. Y. et al. Good cost compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer. Europhys. Lett. 110, 37004 (2015).
Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, 7 (2019).
Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable community mannequin for electrically tunable ferroelectric area construction in twistronic bilayers of two-dimensional semiconductors. Nano. Lett. 22, 1534–1540 (2022).
Wang, H. & Qian, X. F. Ferroelectric nonlinear anomalous Corridor impact in few-layer WTe2. npj Comput. Mater. 5, 119 (2019).
Efros, A. L., Nguyen, V. L. & Shklovskii, B. I. Variable vary hopping in doped crystalline semiconductors. Stable State Commun. 32, 851–854 (1979).
Efros, A. L. & Shklovskii, B. I. Coulomb hole and low-temperature conductivity of disordered methods. J. Phys. C 8, 49–51 (1975).
Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765 (2022).
He, P. et al. Graphene moiré superlattices with big quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378 (2022).
Zhang, C. P. et al. Big nonlinear Corridor impact in strained twisted bilayer graphene. Phys. Rev. B 106, L041111 (2022).
Xiao, D., Chang, M. C. & Niu, Q. Berry part results on digital properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
Saito, Y. et al. Isospin Pomeranchuk impact in twisted bilayer graphene. Nature 592, 220–224 (2021).
Burkov, A. A. & Balents, L. Anomalous Corridor impact in ferromagnetic semiconductors within the hopping transport regime. Phys. Rev. Lett. 91, 057202 (2003).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional materials. Science 342, 614–617 (2013).
Tang, Y. H. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Zhu, J. C., Li, T. X., Younger, A. F., Shan, J. & Mak, Okay. F. Quantum oscillations in two-dimensional insulators induced by graphite gates. Phys. Rev. Lett. 127, 247702 (2021).
Wang, P. J. et al. Landau quantization and extremely cell fermions in an insulator. Nature 589, 225–229 (2021); erratum 591, E17 (2021).
Jia, Y. Y. et al. Proof for a monolayer excitonic insulator. Nat. Phys. 18, 87 (2022).