Corridor, J.E. & Corridor, M. E. Guyton and Corridor Textbook of Medical Physiology (Elsevier Well being Sciences, 2010).
Du, B. et al. Glomerular barrier behaves as an atomically exact bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).
Zhuo, J. L. & Li, X. C. Proximal nephron. Compr. Physiol. 3, 1079–1123 (2013).
Gudehithlu, Ok. P., Pegoraro, A. A., Dunea, G., Arruda, J. A. L. & Singh, A. Ok. Degradation of albumin by the renal proximal tubule cells and the following destiny of its fragments. Kidney Int. 65, 2113–2122 (2004).
Sancey, L. et al. Lengthy-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano 9, 2477–2488 (2015).
Tenten, V. et al. Albumin is recycled from the first urine by tubular transcytosis. J. Am. Soc. Nephrol. 24, 1966–1980 (2013).
Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles within the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).
Oh, N. & Park, J.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 9, 51–63 (2014).
Chithrani, B. D. & Chan, W. C. W. Elucidating the mechanism of mobile uptake and elimination of protein-coated gold nanoparticles of various dimensions and shapes. Nano Lett. 7, 1542–1550 (2007).
Balfourier, A. et al. Sudden intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl Acad. Sci. USA 117, 103–113 (2019).
Kim, C. et al. Regulating exocytosis of nanoparticles by way of host–visitor chemistry. Org. Biomol. Chem. 13, 2474–2479 (2015).
Ho, L. W. C., Yin, B., Dai, G. & Choi, C. H. J. Impact of floor modification with hydrocarbyl teams on the exocytosis of nanoparticles. Biochemistry 60, 1019–1030 (2021).
Ho, L. W. C. et al. Mammalian cells exocytose alkylated gold nanoparticles by way of extracellular vesicles. ACS Nano 16, 2032–2045 (2022).
Tang, S., Huang, Y. & Zheng, J. Salivary excretion of renal-clearable silver nanoparticles. Angew. Chem. Int. Ed. 59, 19894–19898 (2020).
Soo Choi, H. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).
Christensen, E. I., Rennke, H. G. & Carone, F. A. Renal tubular uptake of protein: impact of molecular cost. Am. J. Physiol. Ren. Physiol. 244, F436–F441 (1983).
Xiao, Ok. et al. The impact of floor cost on in vivo biodistribution of PEG-oligocholic acid based mostly micellar nanoparticles. Biomaterials 32, 3435–3446 (2011).
Tabata, Y. & Ikada, Y. Impact of the dimensions and floor cost of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9, 356–362 (1988).
Jiang, X., Du, B. & Zheng, J. Glutathione-mediated biotransformation within the liver modulates nanoparticle transport. Nat. Nanotechnol. 14, 874–882 (2019).
Schuh, C. D. et al. Mixed structural and useful imaging of the kidney reveals main axial variations in proximal tubule endocytosis. J. Am. Soc. Nephrol. 29, 2696–2712 (2018).
Miller, R. P., Tadagavadi, R. Ok., Ramesh, G. & Reeves, W. B. Mechanisms of cisplatin nephrotoxicity. Toxins 2, 2490–2518 (2010).
Stamellou, E., Leuchtle, Ok. & Moeller, M. J. Regenerating tubular epithelial cells of the kidney. Nephrol. Dialysis Transplant. 36, 1968–1975 (2020).
Fujigaki, Y. Completely different modes of renal proximal tubule regeneration in well being and illness. World J. Nephrol. 1, 92–99 (2012).
Fowler, B. A. Ultrastructural proof for nephropathy induced by long-term publicity to small quantities of methyl mercury. Science 175, 780–781 (1972).
Melentijevic, I. et al. C. elegans neurons jettison protein aggregates and mitochondria underneath neurotoxic stress. Nature 542, 367–371 (2017).
Moras, M., Lefevre, S. D. & Ostuni, M. A. From erythroblasts to mature crimson blood cells: organelle clearance in mammals. Entrance. Physiol. 8, 1076 (2017).