Collins, F. S. & Varmus, H. A brand new initiative on precision medication. N. Engl. J. Med. 372, 793–795 (2015).
Thomasian, N. M., Kamel, I. R. & Bai, H. X. Machine intelligence in non-invasive endocrine most cancers diagnostics. Nat. Rev. Endocrinol. 18, 81–95 (2022).
Vargas, A. J. & Harris, C. C. Biomarker improvement within the precision medication period: lung most cancers as a case research. Nat. Rev. Most cancers 16, 525–537 (2016).
Nassiri, F. et al. Detection and discrimination of intracranial tumors utilizing plasma cell-free DNA methylomes. Nat. Med. 26, 1044–1047 (2020).
Krzywinski, M. & Savig, E. Multidimensional information. Nat. Strategies 10, 595 (2013).
Luo, Y. et al. A multidimensional precision medication method identifies an autism subtype characterised by dyslipidemia. Nat. Med. 26, 1375–1379 (2020).
Larance, M. & Lamond, A. I. Multidimensional proteomics for cell biology. Nat. Rev. Mol. Cell Biol. 16, 269–280 (2015).
Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood take a look at. Science 359, 926–930 (2018).
Berger, B., Peng, J. & Singh, M. Computational options for omics information. Nat. Rev. Genet. 14, 333–346 (2013).
Crichton, D. J. et al. Most cancers biomarkers and massive information: a planetary science method. Most cancers Cell 38, 757–760 (2020).
Liang, H. et al. Analysis and correct diagnoses of pediatric ailments utilizing synthetic intelligence. Nat. Med. 25, 433–438 (2019).
Kristensen, V. N. et al. Rules and strategies of integrative genomic analyses in most cancers. Nat. Rev. Most cancers 14, 299–313 (2014).
Komori, T. The 2021 WHO classification of tumors, fifth version, central nervous system tumors: the ten fundamental rules. Mind Tumor Pathol. 39, 47–50 (2022).
Blanc, T., El Beheiry, M., Caporal, C., Masson, J. B. & Hajj, B. Genuage: visualize and analyze multidimensional single-molecule level cloud information in digital actuality. Nat. Strategies 17, 1100–1102 (2020).
Adamcova, M. & Šimko, F. Multiplex biomarker method to cardiovascular ailments. Acta Pharmacol. Sin. 39, 1068–1072 (2018).
Subramanian, I., Verma, S., Kumar, S., Jere, A. & Anamika, Ok. Multi-omics information integration, interpretation, and its software. Bioinf. Biol. Insights https://doi.org/10.1177/1177932219899051 (2020).
Montaner, J. et al. Multilevel omics for the invention of biomarkers and therapeutic targets for stroke. Nat. Rev. Neurol. 16, 247–264 (2020).
Tarazona, S., Arzalluz-Luque, A. & Conesa, A. Undisclosed, unmet and uncared for challenges in multi-omics research. Nat. Comput. Sci. 1, 395–402 (2021).
Tarazona, S. et al. Harmonization of high quality metrics and energy calculation in multi-omic research. Nat. Commun. 11, 3092 (2020).
Lopez de Maturana, E. et al. Challenges within the integration of omics and non-omics information. Genes 10, 238 (2019).
Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. An autonomous molecular pc for logical management of gene expression. Nature 429, 423–429 (2004).
Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).
Lopez, R., Wang, R. & Seelig, G. A molecular multi-gene classifier for illness diagnostics. Nat. Chem. 10, 746–754 (2018).
Zhang, C. et al. Most cancers analysis with DNA molecular computation. Nat. Nanotechnol. 15, 709–715 (2020).
Yao, G. et al. Meta-DNA buildings. Nat. Chem. 12, 1067–1075 (2020).
Yao, G. et al. Programming nanoparticle valence bonds with single-stranded DNA encoders. Nat. Mater. 19, 781–788 (2020).
Li, J. et al. Encoding quantized fluorescence states with fractal DNA frameworks. Nat. Commun. 11, 2185 (2020).
Wiraja, C. et al. Framework nucleic acids as programmable provider for transdermal drug supply. Nat. Commun. 10, 1147 (2019).
Zhang, T. et al. Design, fabrication and purposes of tetrahedral DNA nanostructure-based multifunctional complexes in drug supply and biomedical therapy. Nat. Protoc. 15, 2728–2757 (2020).
Track, P. et al. Programming bulk enzyme heterojunctions for biosensor improvement with tetrahedral DNA framework. Nat. Commun. 11, 838 (2020).
Lin, M. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. Int. Ed. 54, 2151–2155 (2015).
Woehrstein, J. B. et al. 100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA. Sci. Adv. 3, e1602128 (2017).
Ulbrich, M. H. & Isacoff, E. Y. Subunit counting in membrane-bound proteins. Nat. Strategies 4, 319–321 (2007).
Hearty, S., Leonard, P. & O’Kennedy, R. Barcodes take a look at prostate most cancers. Nat. Nanotechnol. 5, 9–10 (2010).
Hill, H. D. & Mirkin, C. A. The bio-barcode assay for the detection of protein and nucleic acid targets utilizing DTT-induced ligand alternate. Nat. Protoc. 1, 324–336 (2006).
Nam, J.-M., Thaxton, C. S. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).
Zebda, A. et al. Mediatorless high-power glucose biofuel cells primarily based on compressed carbon nanotube-enzyme electrodes. Nat. Commun. 2, 370 (2011).
de Jong, O. G. et al. A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated practical switch of RNA. Nat. Commun. 11, 1113 (2020).
Zhao, Z. et al. Nanocaged enzymes with enhanced catalytic exercise and elevated stability towards protease digestion. Nat. Commun. 7, 10619 (2016).
He, L. et al. Transducing advanced biomolecular interactions by temperature-output synthetic DNA signaling networks. J. Am. Chem. Soc. 142, 14234–14239 (2020).
Li, H., Brouwer, C. R. & Luo, W. A common deep neural community for in-depth cleansing of single-cell RNA-Seq information. Nat. Commun. 13, 1901 (2022).
Lin, M. et al. Electrochemical detection of nucleic acids, proteins, small molecules and cells utilizing a DNA-nanostructure-based common biosensing platform. Nat. Protoc. 11, 1244–1263 (2016).
Gorog, D. A. et al. Present and novel biomarkers of thrombotic threat in COVID-19: a Consensus Assertion from the Worldwide COVID-19 Thrombosis Biomarkers Colloquium. Nat. Rev. Cardiol. 19, 475–495 (2022).
Schwarzenbach, H., Hoon, D. S. B. & Pantel, Ok. Cell-free nucleic acids as biomarkers in most cancers sufferers. Nat. Rev. Most cancers 11, 426–437 (2011).
Xiao, B. et al. Plasma microRNA panel is a novel biomarker for focal segmental glomerulosclerosis and related to podocyte apoptosis. Cell Dying Dis. 9, 533 (2018).
Bhanvadia, R. R. et al. MEIS1 and MEIS2 expression and prostate most cancers development: a task for HOXB13 binding companions in metastatic illness. Clin. Most cancers Res. 24, 3668–3680 (2018).
Kumar, D., Gupta, A., Mandhani, A. & Sankhwar, S. N. Metabolomics-derived prostate most cancers biomarkers: truth or fiction? J. Proteome Res. 14, 1455–1464 (2015).
Rajakumar, T. et al. A blood-based miRNA signature with prognostic worth for total survival in superior stage non-small cell lung most cancers handled with immunotherapy. npj Summary. Oncol. 6, 19 (2022).
Nassiri, F. et al. A clinically relevant integrative molecular classification of meningiomas. Nature 597, 119–125 (2021).
Li, F. et al. Ultrafast DNA sensors with DNA framework-bridged hybridization reactions. J. Am. Chem. Soc. 142, 9975–9981 (2020).