Dong S, Zhang YN, Wan J, Cui R, Yu X, Zhao G, Lin Okay. A novel multifunctional carbon aerogel-coated platform for osteosarcoma remedy and enhanced bone regeneration. J Mater Chem B. 2020;8:368–79.
Michalakis Okay, Bakopoulou A, Papachristou E, Vasilaki D, Tsouknidas A, Michailidis N, Johnstone E. Analysis of the response of HOS and Saos-2 osteosarcoma cell traces when uncovered to totally different sizes and concentrations of silver nanoparticles. Biomed Res Int. 2021;2021:5013065.
Ritter J, Bielack SS. Osteosarcoma. Ann Oncol. 2010;21(Suppl 7):vii320-325.
Pugazhendhi A, Edison T, Velmurugan BK, Jacob JA, Karuppusamy I. Toxicity of doxorubicin (Dox) to totally different experimental organ methods. Life Sci. 2018;200:26–30.
Gonzalez-Fernandez Y, Imbuluzqueta E, Zalacain M, Mollinedo F, Patino-Garcia A, Blanco-Prieto MJ. Doxorubicin and edelfosine lipid nanoparticles are efficient performing synergistically towards drug-resistant osteosarcoma most cancers cells. Most cancers Lett. 2017;388:262–8.
Li Okay, Li D, Zhao L, Chang Y, Zhang Y, Cui Y, Zhang Z. Calcium-mineralized polypeptide nanoparticle for intracellular drug supply in osteosarcoma chemotherapy. Bioact Mater. 2020;5:721–31.
Wu H, Luo Y, Xu D, Ke X, Ci T. Low molecular weight heparin modified bone focusing on liposomes for orthotopic osteosarcoma and breast most cancers bone metastatic tumors. Int J Biol Macromol. 2020;164:2583–97.
Chen J, Qian C, Ren P, Yu H, Kong X, Huang C, Luo H, Chen G. Gentle-responsive micelles loaded with doxorubicin for osteosarcoma suppression. Entrance Pharmacol. 2021;12: 679610.
Wang Y, Li L, Shao N, Hu Z, Chen H, Xu L, Wang C, Cheng Y, Xiao J. Triazine-modified dendrimer for environment friendly TRAIL gene remedy in osteosarcoma. Acta Biomater. 2015;17:115–24.
Zhang Y, Wang F, Li M, Yu Z, Qi R, Ding J, Zhang Z, Chen X. Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv Sci (Weinh). 2018;5:1700821.
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug supply. J Drug Goal. 2016;24:179–91.
Gu W, Wu C, Chen J, Xiao Y. Nanotechnology within the focused drug supply for bone ailments and bone regeneration. Int J Nanomed. 2013;8:2305–17.
Miao Y, Zhang H, Pan Y, Ren J, Ye M, Xia F, Huang R, Lin Z, Jiang S, Zhang Y, et al. Single-walled carbon nanotube: one particular inhibitor of most cancers stem cells in osteosarcoma upon downregulation of the TGFbeta1 signaling. Biomaterials. 2017;149:29–40.
Matsumura Y, Maeda H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Most cancers Res. 1986;46:6387–92.
Ni M, Xiong M, Zhang X, Cai G, Chen H, Zeng Q, Yu Z. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for focused salinomycin supply to CD133+ osteosarcoma most cancers stem cells. Int J Nanomed. 2015;10:2537–54.
Ai JW, Liu B, Liu WD. Folic acid-tagged titanium dioxide nanoparticles for enhanced anticancer impact in osteosarcoma cells. Mater Sci Eng C Mater Biol Appl. 2017;76:1181–7.
Li Volsi A, Scialabba C, Vetri V, Cavallaro G, Licciardi M, Giammona G. Close to-infrared gentle responsive folate focused gold nanorods for mixed photothermal-chemotherapy of osteosarcoma. ACS Appl Mater Interfaces. 2017;9:14453–69.
Wang L, Huang X, You X, Yi T, Lu B, Liu J, Lu G, Ma M, Zou C, Wu J, Zhao W. Nanoparticle enhanced mixture remedy for stem-like progenitors outlined by single-cell transcriptomics in chemotherapy-resistant osteosarcoma. Sign Transduct Goal Remedy. 2020;5:196.
Liu H, Zhang R, Zhang D, Zhang C, Zhang Z, Fu X, Luo Y, Chen S, Wu A, Zeng W, et al. Cyclic RGD-decorated liposomal gossypol AT-101 focusing on for enhanced antitumor impact. Int J Nanomed. 2022;17:227–44.
Gatta G, Capocaccia R, Botta L, Mallone S, De Angelis R, Ardanaz E, Comber H, Dimitrova N, Leinonen MK, Siesling S, et al. Burden and centralised remedy in Europe of uncommon tumours: outcomes of RARECAREnet—a population-based examine. Lancet Oncol. 2017;18:1022–39.
de Pinieux G, Karanian M, Le Loarer F, Le Guellec S, Chabaud S, Terrier P, Bouvier C, Batistella M, Neuville A, Robin YM, et al. Nationwide incidence of sarcomas and connective tissue tumors of intermediate malignancy over 4 years utilizing an skilled pathology assessment community. PLoS ONE. 2021;16: e0246958.
Liang B, Zuo D, Yu Okay, Cai X, Qiao B, Deng R, Yang J, Chu L, Deng Z, Zheng Y, Zuo G. Multifunctional bone cement for synergistic magnetic hyperthermia ablation and chemotherapy of osteosarcoma. Mater Sci Eng C Mater Biol Appl. 2020;108: 110460.
Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma remedy—the place will we stand? A cutting-edge assessment. Most cancers Deal with Rev. 2014;40:523–32.
Shoaib Z, Fan TM, Irudayaraj JMK. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol. 2022;179:201–17.
Cappariello A, Rucci N. Tumour-derived extracellular vesicles (EVs): a harmful, “message in a bottle” for bone. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20194805.
Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-beta signaling in bone transforming and osteosarcoma development. J Clin Med. 2016;5:96.
Meltzer PS, Helman LJ. New horizons within the remedy of osteosarcoma. N Engl J Med. 2021;385:2066–76.
Gao X, Li L, Cai X, Huang Q, Xiao J, Cheng Y. Focusing on nanoparticles for prognosis and remedy of bone tumors: alternatives and challenges. Biomaterials. 2021;265: 120404.
Overchuk M, Zheng G. Overcoming obstacles within the tumor microenvironment: current developments in nanoparticle supply for most cancers theranostics. Biomaterials. 2018;156:217–37.
McCarthy I. The physiology of bone blood circulation: a assessment. J Bone Jt Surg Am. 2006;88(Suppl 3):4–9.
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized autos for drug supply in most cancers. Developments Pharmacol Sci. 2009;30:592–9.
Wang SY, Hu HZ, Qing XC, Zhang ZC, Shao ZW. Current advances of drug supply nanocarriers in osteosarcoma remedy. J Most cancers. 2020;11:69–82.
Balaure PC, Grumezescu AM. Good artificial polymer nanocarriers for managed and site-specific drug supply. Curr High Med Chem. 2015;15:1424–90.
Prasad SR, Kumar TSS, Jayakrishnan A. Nanocarrier-based drug supply methods for bone most cancers remedy: a assessment. Biomed Mater. 2021;16:044107.
Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis strategies for nanosized hydroxyapatite with numerous buildings. Acta Biomater. 2013;9:7591–621.
Malmberg P, Nygren H. Strategies for the evaluation of the composition of bone tissue, with a give attention to imaging mass spectrometry (TOF-SIMS). Proteomics. 2008;8:3755–62.
Coxon FP, Thompson Okay, Rogers MJ. Current advances in understanding the mechanism of motion of bisphosphonates. Curr Opin Pharmacol. 2006;6:307–12.
Mukherjee S, Music Y, Oldfield E. NMR investigations of the static and dynamic buildings of bisphosphonates on human bone: a molecular mannequin. J Am Chem Soc. 2008;130:1264–73.
Szabo CM, Martin MB, Oldfield E. An investigation of bone resorption and Dictyostelium discoideum development inhibition by bisphosphonate medicine. J Med Chem. 2002;45:2894–903.
Russell RG. Bisphosphonates: mode of motion and pharmacology. Pediatrics. 2007;119(Suppl 2):S150-162.
Cole LE, Vargo-Gogola T, Roeder RK. Focused supply to bone and mineral deposits utilizing bisphosphonate ligands. Adv Drug Deliv Rev. 2016;99:12–27.
Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of motion of bisphosphonates: similarities and variations and their potential affect on scientific efficacy. Osteoporos Int. 2008;19:733–59.
von Moos R, Costa L, Gonzalez-Suarez E, Terpos E, Niepel D, Physique JJ. Administration of bone well being in strong tumours: From bisphosphonates to a monoclonal antibody. Most cancers Deal with Rev. 2019;76:57–67.
Torres Martin de Rosales R, Tavare R, Glaria A, Varma G, Protti A, Blower PJ. ((9)(9)m)Tc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem. 2011;22:455–65.
Segal E, Pan H, Benayoun L, Kopeckova P, Shaked Y, Kopecek J, Satchi-Fainaro R. Enhanced anti-tumor exercise and security profile of focused nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate within the remedy of bone malignances. Biomaterials. 2011;32:4450–63.
Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB. Doxorubicin pathways: pharmacodynamics and adversarial results. Pharmacogenet Genomics. 2011;21:440–6.
Morton SW, Shah NJ, Quadir MA, Deng ZJ, Poon Z, Hammond PT. Osteotropic remedy through focused layer-by-layer nanoparticles. Adv Healthc Mater. 2014;3:867–75.
Nguyen TD, Pitchaimani A, Aryal S. Engineered nanomedicine with alendronic acid corona improves focusing on to osteosarcoma. Sci Rep. 2016;6:36707.
Kang NW, Lee JY, Kim DD. Hydroxyapatite-binding albumin nanoclusters for enhancing bone tumor chemotherapy. J Management Launch. 2022;342:111–21.
Nguyen TDT, Pitchaimani A, Ferrel C, Thakkar R, Aryal S. Nano-confinement-driven enhanced magnetic relaxivity of SPIONs for focused tumor bioimaging. Nanoscale. 2017;10:284–94.
Yin Q, Tang L, Cai Okay, Tong R, Sternberg R, Yang X, Dobrucki LW, Borst LB, Kamstock D, Music Z, et al. Pamidronate functionalized nanoconjugates for focused remedy of focal skeletal malignant osteolysis. Proc Natl Acad Sci U S A. 2016;113:E4601-4609.
Maeda H, Nakamura H, Fang J. The EPR impact for macromolecular drug supply to strong tumors: Enchancment of tumor uptake, reducing of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.
Yuan Y, Music JX, Zhang MN, Yuan BS. A a number of drug loaded, functionalized pH-sensitive nanocarrier as therapeutic and epigenetic modulator for osteosarcoma. Sci Rep. 2020;10:15497.
Tong F, Ye Y, Chen B, Gao J, Liu L, Ou J, van Hest JCM, Liu S, Peng F, Tu Y. Bone-targeting prodrug mesoporous silica-based nanoreactor with reactive oxygen species burst for enhanced chemotherapy. ACS Appl Mater Interfaces. 2020;12:34630–42.
Sarig S. Aspartic acid nucleates the apatite crystallites of bone: a speculation. Bone. 2004;35:108–13.
Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Drug supply methods functionalized with bone mineral searching for brokers for bone focused therapeutics. J Management Launch. 2018;269:88–99.
Liang H, Zhou L, Hu Z, Ge Y, Zhang T, Chen Q, Wang B, Lu S, Ding W, Dong J, et al. Siglec15 checkpoint blockade for simultaneous immunochemotherapy and osteolysis inhibition in lung adenocarcinoma spinal metastasis through a hole nanoplatform. Small. 2022;18: e2107787.
Rotman SG, Moriarty TF, Nottelet B, Grijpma DW, Eglin D, Guillaume O. Poly(aspartic acid) functionalized poly(-caprolactone) microspheres with enhanced hydroxyapatite affinity as bone focusing on antibiotic carriers. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12090885.
Tao S, Chen SQ, Zhou WT, Yu FY, Bao L, Qiu GX, Qiao Q, Hu FQ, Wang JW, Yuan H. A novel biocompatible, simvastatin-loaded, bone-targeting lipid nanocarrier for treating osteoporosis extra successfully. RSC Adv. 2020;10:20445–59.
Huang L, Wang X, Cao H, Li L, Chow DH, Tian L, Wu H, Zhang J, Wang N, Zheng L, et al. A bone-targeting supply system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials. 2018;182:58–71.
Low SA, Galliford CV, Yang J, Low PS, Kopecek J. Biodistribution of fracture-targeted GSK3beta Inhibitor-loaded micelles for improved fracture therapeutic. Biomacromol. 2015;16:3145–53.
Zhao Z, Chen C, Xie C, Zhao Y. Design, synthesis and analysis of liposomes modified with dendritic aspartic acid for bone-specific focusing on. Chem Phys Lipids. 2020;226: 104832.
Low SA, Yang J, Kopecek J. Bone-targeted acid-sensitive doxorubicin conjugate micelles as potential osteosarcoma therapeutics. Bioconjug Chem. 2014;25:2012–20.
Wang X, Yang Y, Jia H, Jia W, Miller S, Bowman B, Feng J, Zhan F. Peptide ornament of nanovehicles to attain energetic focusing on and pathology-responsive mobile uptake for bone metastasis chemotherapy. Biomater Sci. 2014;2:961–71.
Wang Y, Yang J, Liu H, Wang X, Zhou Z, Huang Q, Music D, Cai X, Li L, Lin Okay, et al. Osteotropic peptide-mediated bone focusing on for photothermal remedy of bone tumors. Biomaterials. 2017;114:97–105.
Zhang Y, Wei L, Miron RJ, Shi B, Bian Z. Anabolic bone formation through a site-specific bone-targeting supply system by interfering with semaphorin 4D expression. J Bone Miner Res. 2015;30:286–96.
Yan Y, Zhou L, Solar Z, Music D, Cheng Y. Focused and intracellular supply of protein therapeutics by a boronated polymer for the remedy of bone tumors. Bioact Mater. 2022;7:333–40.
Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri Okay, Bhattacharya R, Robertson JD, Rotello VM, Reid JM, Mukherjee P. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS ONE. 2011;6: e24374.
Kasugai S, Fujisawa R, Waki Y, Miyamoto Okay, Ohya Okay. Selective drug supply system to bone: small peptide (Asp)6 conjugation. J Bone Miner Res. 2000;15:936–43.
Vucenik I, Shamsuddin AM. Safety towards most cancers by dietary IP6 and inositol. Nutr Most cancers. 2006;55:109–25.
Chen Q. Willpower of phytic acid and inositol pentakisphosphates in meals by high-performance ion chromatography. J Agric Meals Chem. 2004;52:4604–13.
Ubellacker JM, Baryawno N, Extreme N, DeCristo MJ, Sceneay J, Hutchinson JN, Haider MT, Rhee CS, Qin Y, Gregory WM, et al. Modulating bone marrow hematopoietic lineage potential to stop bone metastasis in breast most cancers. Most cancers Res. 2018;78:5300–14.
Shamsuddin AM. Metabolism and mobile capabilities of IP6: a assessment. Anticancer Res. 1999;19:3733–6.
Wang C, Li L, Zhang S, Yan Y, Huang Q, Cai X, Xiao J, Cheng Y. Service-free platinum nanomedicine for focused most cancers remedy. Small. 2020;16: e2004829.
Zhou Z, Fan T, Yan Y, Zhang S, Zhou Y, Deng H, Cai X, Xiao J, Music D, Zhang Q, Cheng Y. One stone with two birds: phytic acid-capped platinum nanoparticles for focused mixture remedy of bone tumors. Biomaterials. 2019;194:130–8.
Xie Y, Liu C, Huang H, Huang J, Deng A, Zou P, Tan X. Bone-targeted supply of simvastatin-loaded PEG-PLGA micelles conjugated with tetracycline for osteoporosis remedy. Drug Deliv Transl Res. 2018;8:1090–102.
Wang H, Liu J, Tao S, Chai G, Wang J, Hu FQ, Yuan H. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug supply system. Int J Nanomed. 2015;10:5671–85.
Neale JR, Richter NB, Merten KE, Taylor KG, Singh S, Waite LC, Emery NK, Smith NB, Cai J, Pierce WM Jr. Bone selective impact of an estradiol conjugate with a novel tetracycline-derived bone-targeting agent. Bioorg Med Chem Lett. 2009;19:680–3.
Li CJ, Liu XZ, Zhang L, Chen LB, Shi X, Wu SJ, Zhao JN. Advances in bone-targeted drug supply methods for neoadjuvant chemotherapy for osteosarcoma. Orthop Surg. 2016;8:105–10.
Kievit FM, Stephen ZR, Veiseh O, Arami H, Wang T, Lai VP, Park JO, Ellenbogen RG, Disis ML, Zhang M. Focusing on of major breast cancers and metastases in a transgenic mouse mannequin utilizing rationally designed multifunctional SPIONs. ACS Nano. 2012;6:2591–601.
Solar T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug supply in most cancers remedy. Angew Chem Int Ed Engl. 2014;53:12320–64.
Hao Z, Fan W, Hao J, Wu X, Zeng GQ, Zhang LJ, Nie SF, Wang XD. Environment friendly supply of micro RNA to bone-metastatic prostate tumors through the use of aptamer-conjugated atelocollagen in vitro and in vivo. Drug Deliv. 2016;23:874–81.
Pourtau L, Oliveira H, Thevenot J, Wan Y, Brisson AR, Sandre O, Miraux S, Thiaudiere E, Lecommandoux S. Antibody-functionalized magnetic polymersomes: in vivo focusing on and imaging of bone metastases utilizing excessive decision MRI. Adv Healthc Mater. 2013;2:1420–4.
Du S, Xiong H, Xu C, Lu Y, Yao J. Makes an attempt to strengthen and simplify the tumor vascular normalization technique utilizing tumor vessel normalization selling nanomedicines. Biomater Sci. 2019;7:1147–60.
Li X, Wang L, Wang L, Yu J, Lu G, Zhao W, Miao C, Zou C, Wu J. Overcoming therapeutic failure in osteosarcoma through Apatinib-encapsulated hydrophobic poly(ester amide) nanoparticles. Biomater Sci. 2020;8:5888–99.
Folkman J. Combating most cancers by attacking its blood provide. Sci Am. 1996;275:150–4.
Byrne JD, Betancourt T, Brannon-Peppas L. Lively focusing on schemes for nanoparticle methods in most cancers therapeutics. Adv Drug Deliv Rev. 2008;60:1615–26.
Liu C, Wang J, Zheng Y, Zhu Y, Zhou Z, Liu Z, Lin C, Wan Y, Wen Y, Liu C, et al. Autocrine pro-legumain promotes breast most cancers metastasis through binding to integrin alphavbeta3. Oncogene. 2022. https://doi.org/10.1016/j.suronc.2009.09.002.
Zhou Q, Zhu Y, Deng Z, Lengthy H, Zhang S, Chen X. VEGF and EMMPRIN expression correlates with survival of sufferers with osteosarcoma. Surg Oncol. 2011;20:13–9.
Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo Okay. Regulation of angiogenesis through vascular endothelial development issue receptors. Most cancers Res. 2000;60:203–12.
Bajpai J, Sharma M, Sreenivas V, Kumar R, Gamnagatti S, Khan SA, Rastogi S, Malhotra A, Bakhshi S. VEGF expression as a prognostic marker in osteosarcoma. Pediatr Blood Most cancers. 2009;53:1035–9.
Oda Y, Yamamoto H, Tamiya S, Matsuda S, Tanaka Okay, Yokoyama R, Iwamoto Y, Tsuneyoshi M. CXCR4 and VEGF expression within the major web site and the metastatic web site of human osteosarcoma: evaluation inside a bunch of sufferers, all of whom developed lung metastasis. Mod Pathol. 2006;19:738–45.
Wang L, You X, Lou Q, He S, Zhang J, Dai C, Zhao M, Zhao M, Hu H, Wu J. Cysteine-based redox-responsive nanoparticles for small-molecule agent supply. Biomater Sci. 2019;7:4218–29.
Xie L, Ji T, Guo W. Anti-angiogenesis goal remedy for superior osteosarcoma (assessment). Oncol Rep. 2017;38:625–36.
Grignani G, Palmerini E, Ferraresi V, D’Ambrosio L, Bertulli R, Asaftei SD, Tamburini A, Pignochino Y, Sangiolo D, Marchesi E, et al. Sorafenib and everolimus for sufferers with unresectable high-grade osteosarcoma progressing after customary remedy: a non-randomised part 2 scientific trial. Lancet Oncol. 2015;16:98–107.
Chen J, Wu H, Han D, Xie C. Utilizing anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver most cancers. Most cancers Lett. 2006;231:169–75.
Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BT, Tjarks W, Barth RF, Claffey Okay, Backer JM. Vascular endothelial development issue selectively targets boronated dendrimers to tumor vasculature. Mol Most cancers Ther. 2005;4:1423–9.
Kovach AK, Gambino JM, Nguyen V, Nelson Z, Szasz T, Liao J, Williams L, Bulla S, Prabhu R. Potential preliminary in vitro investigation of a magnetic iron oxide nanoparticle conjugated with ligand CD80 and VEGF antibody as a focused drug supply system for the induction of cell dying in rodent osteosarcoma cells. Biores Open Entry. 2016;5:299–307.
Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Fala F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito L, et al. CTLA-4 is constitutively expressed on tumor cells and might set off apoptosis upon ligand interplay. Int J Most cancers. 2005;117:538–50.
Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology. 2000;101:169–77.
Chen T, Li T, Wang J. Nanoscale Au@SiO2-drug/VEGF as an in vivo probe for osteosarcoma prognosis and remedy. Oncol Lett. 2021;22:766.
Wu X, Zhang X, Feng W, Feng H, Ding Z, Zhao Q, Li X, Tang N, Zhang P, Li J, Wang J. A focused erythrocyte membrane-encapsulated drug-delivery system with anti-osteosarcoma and anti-osteolytic results. ACS Appl Mater Interfaces. 2021;13:27920–33.
Tang L, Xu M, Zhang L, Qu L, Liu X. Function of alphaVbeta3 in prostate most cancers: metastasis initiator and necessary therapeutic goal. Onco Targets Remedy. 2020;13:7411–22.
Boger C, Warneke VS, Behrens HM, Kalthoff H, Goodman SL, Becker T, Rocken C. Integrins alphavbeta3 and alphavbeta5 as prognostic, diagnostic, and therapeutic targets in gastric most cancers. Gastric Most cancers. 2015;18:784–95.
Hosotani R, Kawaguchi M, Masui T, Koshiba T, Ida J, Fujimoto Okay, Wada M, Doi R, Imamura M. Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas. 2002;25:e30-35.
Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS. Alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis. 2003;6:105–19.
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-binding integrins revisited: how lately found capabilities and novel artificial ligands (re-)form an ever-evolving area. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13071711.
Li L, Wartchow CA, Danthi SN, Shen Z, Dechene N, Pease J, Choi HS, Doede T, Chu P, Ning S, et al. A novel antiangiogenesis remedy utilizing an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys. 2004;58:1215–27.
Bellis SL. Benefits of RGD peptides for guiding cell affiliation with biomaterials. Biomaterials. 2011;32:4205–10.
Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17:1359–70.
Gao Y, Zhou Y, Zhao L, Zhang C, Li Y, Li J, Li X, Liu Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater. 2015;23:127–35.
Fang Z, Solar Y, Xiao H, Li P, Liu M, Ding F, Kan W, Miao R. Focused osteosarcoma chemotherapy utilizing RGD peptide-installed doxorubicin-loaded biodegradable polymeric micelle. Biomed Pharmacother. 2017;85:160–8.
Lu Y, Li L, Lin Z, Li M, Hu X, Zhang Y, Peng M, Xia H, Han G. Enhancing osteosarcoma killing and CT imaging utilizing ultrahigh drug loading and nir-responsive bismuth sulfide@mesoporous silica nanoparticles. Adv Healthc Mater. 2018;7: e1800602.
Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, Zhang W, Pu F, Shao Z. Engineered exosome as focused lncRNA MEG3 supply autos for osteosarcoma remedy. J Management Launch. 2022;343:107–17.
Hu H, Deng X, Music Q, Yang W, Zhang Y, Liu W, Wang S, Liang Z, Xing X, Zhu J, et al. Mitochondria-targeted accumulation of oxygen-irrelevant free radicals for enhanced synergistic low-temperature photothermal and thermodynamic remedy. J Nanobiotechnol. 2021;19:390.
Wang L, Niu X, Music Q, Jia J, Hao Y, Zheng C, Ding Okay, Xiao H, Liu X, Zhang Z, Zhang Y. A two-step exact focusing on nanoplatform for tumor remedy through the alkyl radicals activated by the microenvironment of organelles. J Management Launch. 2020;318:197–209.
Wang XQ, Peng M, Li CX, Zhang Y, Zhang M, Tang Y, Liu MD, Xie BR, Zhang XZ. Actual-time imaging of free radicals for mitochondria-targeting hypoxic tumor remedy. Nano Lett. 2018;18:6804–11.
Pavel M, Renna M, Park SJ, Menzies FM, Ricketts T, Fullgrabe J, Ashkenazi A, Frake RA, Lombarte AC, Bento CF, et al. Contact inhibition controls cell survival and proliferation through YAP/TAZ-autophagy axis. Nat Commun. 2018;9:2961.
Sudimack J, Lee RJ. Focused drug supply through the folate receptor. Adv Drug Deliv Rev. 2000;41:147–62.
Karimian A, Yousefi B, Sadeghi F, Feizi F, Najafzadehvarzi H, Parsian H. Synthesis of biocompatible nanocrystalline cellulose towards folate receptors as a novel provider for focused supply of doxorubicin. Chem Biol Work together. 2022;351: 109731.
Luo Y, Humayun A, Murray TA, Kemp BS, McFarland A, Liu X, Mills DK. Mobile evaluation and chemotherapeutic potential of a bi-functionalized halloysite nanotube. Pharmaceutics. 2020;12:962.
Xu W, Lou Y, Chen W, Kang Y. Folic acid embellished metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomed Tech (Berl). 2020;65:229–36.
Dhule SS, Penfornis P, He J, Harris MR, Terry T, John V, Pochampally R. The mixed impact of encapsulating curcumin and C6 ceramide in liposomal nanoparticles towards osteosarcoma. Mol Pharm. 2014;11:417–27.
Mineo PG, Foti C, Vento F, Montesi M, Panseri S, Piperno A, Scala A. Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and organic research on osteosarcoma most cancers stem cells. Anal Bioanal Chem. 2020;412:4681–90.
Yang P, Zhang L, Wang T, Liu Q, Wang J, Wang Y, Tu Z, Lin F. Doxorubicin and edelfosine combo-loaded lipid-polymer hybrid nanoparticles for synergistic anticancer impact towards drug-resistant osteosarcoma. Onco Targets Remedy. 2020;13:8055–67.
Wang F, Pang JD, Huang LL, Wang R, Li D, Solar Okay, Wang LT, Zhang LM. Nanoscale polysaccharide spinoff as an AEG-1 siRNA provider for efficient osteosarcoma remedy. Int J Nanomed. 2018;13:857–75.
Bhattacharya D, Santra CR, Ghosh AN, Karmakar P. Differential toxicity of rod and spherical zinc oxide nanoparticles on human peripheral blood mononuclear cells. J Biomed Nanotechnol. 2014;10:707–16.
Huang X, Chen J, Wu W, Yang W, Zhong B, Qing X, Shao Z. Supply of MutT homolog 1 inhibitor by functionalized graphene oxide nanoparticles for enhanced chemo-photodynamic remedy triggers cell dying in osteosarcoma. Acta Biomater. 2020;109:229–43.
Meshkini A, Oveisi H. Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an environment friendly drug supply system for overcoming chemotherapy resistance in osteosarcoma cells. Colloids Surf B Biointerfaces. 2017;158:319–30.
Laskin JJ, Sandler AB. Epidermal development issue receptor: a promising goal in strong tumours. Most cancers Deal with Rev. 2004;30:1–17.
Nicholson RI, Gee JM, Harper ME. EGFR and most cancers prognosis. Eur J Most cancers. 2001;37(Suppl 4):S9-15.
Daw NC, Furman WL, Stewart CF, Iacono LC, Krailo M, Bernstein ML, Dancey JE, Speights RA, Blaney SM, Croop JM, et al. Section I and pharmacokinetic examine of gefitinib in youngsters with refractory strong tumors: a Kids’s Oncology Group Research. J Clin Oncol. 2005;23:6172–80.
Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R, Geller DS. Cell floor receptor expression patterns in osteosarcoma. Most cancers. 2012;118:740–9.
Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock RB, Tajbakhsh M, Reynolds CP, Maris JM, Keir ST, Billups CA, Smith MA. Preliminary testing of dasatinib by the pediatric preclinical testing program. Pediatr Blood Most cancers. 2008;50:1198–206.
Yu Z, Chen F, Qi X, Dong Y, Zhang Y, Ge Z, Cai G, Zhang X. Epidermal development issue receptor aptamer-conjugated polymer-lipid hybrid nanoparticles improve salinomycin supply to osteosarcoma and most cancers stem cells. Exp Ther Med. 2018;15:1247–56.
Chen F, Zeng Y, Qi X, Chen Y, Ge Z, Jiang Z, Zhang X, Dong Y, Chen H, Yu Z. Focused salinomycin supply with EGFR and CD133 aptamers based mostly dual-ligand lipid-polymer nanoparticles to each osteosarcoma cells and most cancers stem cells. Nanomedicine. 2018;14:2115–27.
Baselga J. Herceptin alone or together with chemotherapy within the remedy of HER2-positive metastatic breast most cancers: pivotal trials. Oncology. 2001;61(Suppl 2):14–21.
Xiao H, Jensen PE, Chen X. Elimination of osteosarcoma by necroptosis with graphene oxide-associated anti-HER2 antibodies. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20184360.
Morris MJ, Reuter VE, Kelly WK, Slovin SF, Kenneson Okay, Verbel D, Osman I, Scher HI. HER-2 profiling and focusing on in prostate carcinoma. Most cancers. 2002;94:980–6.
Iqbal N, Iqbal N. Human epidermal development issue receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014: 852748.
Willmore-Payne C, Holden JA, Zhou H, Gupta D, Hirschowitz S, Wittwer CT, Layfield LJ. Analysis of Her-2/neu gene standing in osteosarcoma by fluorescence in situ hybridization and multiplex and monoplex polymerase chain reactions. Arch Pathol Lab Med. 2006;130:691–8.
Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, Dishop MK, Kleinerman EE, Pule M, Rooney CM, et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low ranges of tumor antigen expression. Mol Remedy. 2009;17:1779–87.
Ebb D, Meyers P, Grier H, Bernstein M, Gorlick R, Lipshultz SE, Krailo M, Devidas M, Barkauskas DA, Siegal GP, et al. Section II trial of trastuzumab together with cytotoxic chemotherapy for remedy of metastatic osteosarcoma with human epidermal development issue receptor 2 overexpression: a report from the kids’s oncology group. J Clin Oncol. 2012;30:2545–51.
Li L, Luo C, Music Z, Reyes-Vargas E, Clayton F, Huang J, Jensen P, Chen X. Affiliation of anti-HER2 antibody with graphene oxide for healing remedy of osteosarcoma. Nanomedicine. 2018;14:581–93.
Ahire JH, Chambrier I, Mueller A, Bao Y, Chao Y. Synthesis of D-mannose capped silicon nanoparticles and their interactions with MCF-7 human breast cancerous cells. ACS Appl Mater Interfaces. 2013;5:7384–91.
Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted methods for the supply of therapeutics. Knowledgeable Opin Drug Deliv. 2008;5:703–24.
Guo Y, Liu X, Solar X, Zhang Q, Gong T, Zhang Z. Mannosylated lipid nano-emulsions loaded with lycorine-oleic acid ionic advanced for tumor cell-specific supply. Theranostics. 2012;2:1104–14.
Gabius S, Schirrmacher V, Franz H, Joshi SS, Gabius HJ. Evaluation of cell-surface sugar receptor expression by neoglycoenzyme binding and adhesion to plastic-immobilized neoglycoproteins for associated weakly and strongly metastatic cell traces of murine tumor mannequin methods. Int J Most cancers. 1990;46:500–7.
Deb B, Patel Okay, Sathe G, Kumar P. N-Glycoproteomic profiling reveals alteration in extracellular matrix group in non-type bladder carcinoma. J Clin Med. 2019;8:1303.
Xu ZP, Stevenson G, Lu CQ, Lu GQ. Dispersion and dimension management of layered double hydroxide nanoparticles in aqueous options. J Phys Chem B. 2006;110:16923–9.
Chaubey P, Mishra B. Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the remedy of visceral leishmaniasis. Carbohydr Polym. 2014;101:1101–8.
Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Blanchard-Desce M, Morere A, et al. Mannose-functionalized mesoporous silica nanoparticles for environment friendly two-photon photodynamic remedy of strong tumors. Angew Chem Int Ed Engl. 2011;50:11425–9.
Li L, Zhang R, Gu W, Xu ZP. Mannose-conjugated layered double hydroxide nanocomposite for focused siRNA supply to boost most cancers remedy. Nanomedicine. 2018;14:2355–64.
Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, Feng C, Xie Y, Sha X, Fang X. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug supply in glioma remedy. Biomaterials. 2014;35:518–29.
Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui Okay, Oster ZH, Sacker DF, Shiue CY, Turner H, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): unhazardous tracer for fast tumor detection. J Nucl Med. 1980;21:670–5.
Tung FI, Zheng LJ, Hou KT, Chiang CS, Chen MH, Liu TY. One-stop radiotherapeutic focusing on of major and distant osteosarcoma to inhibit most cancers development and metastasis utilizing 2DG-grafted graphene quantum dots. Nanoscale. 2020;12:8809–18.
Chen WL, Jin X, Wang M, Liu D, Luo Q, Tian H, Cai L, Meng L, Bi R, Wang L, et al. GLUT5-mediated fructose utilization drives lung most cancers development by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Perception. 2020;5:e131596.
Pu Y, Zhang H, Peng Y, Fu Q, Yue Q, Zhao Y, Guo L, Wu Y. Twin-targeting liposomes with energetic recognition of GLUT5 and alphavbeta3 for triple-negative breast most cancers. Eur J Med Chem. 2019;183: 111720.
Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M, Zhao L, Liu J, Qu C, Wei R, et al. Enhanced fructose utilization mediated by SLC2A5 is a singular metabolic characteristic of acute myeloid leukemia with therapeutic potential. Most cancers Cell. 2016;30:779–91.
Zhang C, Hu J, Jiang Y, Tan S, Zhu Okay, Xue C, Dai Y, Chen F. Biomineralization-inspired synthesis of amorphous manganese phosphates for GLUT5-targeted drug-free catalytic remedy of osteosarcoma. Nanoscale. 2022;14:898–909.
Bu Y, Huang R, Li Z, Zhang P, Zhang L, Yang Y, Liu Z, Guo Okay, Gao F. Anisotropic truncated octahedral Au with Pt deposition on arris for localized floor plasmon resonance-enhanced photothermal and photodynamic remedy of osteosarcoma. ACS Appl Mater Interfaces. 2021;13:35328–41.
Zhong W, Pang L, Feng H, Dong H, Wang S, Cong H, Shen Y, Bing Y. Current benefit of hyaluronic acid for anti-cancer utility: a assessment of “3S” transition strategy. Carbohydr Polym. 2020;238: 116204.
Li J, Xue Y, Tian J, Liu Z, Zhuang A, Gu P, Zhou H, Zhang W, Fan X. Fluorinated-functionalized hyaluronic acid nanoparticles for enhanced photodynamic remedy of ocular choroidal melanoma by ameliorating hypoxia. Carbohydr Polym. 2020;237: 116119.
Solar Q, Bi H, Wang Z, Li C, Wang X, Xu J, Zhu H, Zhao R, He F, Gai S, Yang P. Hyaluronic acid-targeted and pH-responsive drug supply system based mostly on metal-organic frameworks for environment friendly antitumor remedy. Biomaterials. 2019;223: 119473.
Li J, He Y, Solar W, Luo Y, Cai H, Pan Y, Shen M, Xia J, Shi X. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for focused tumor MR imaging. Biomaterials. 2014;35:3666–77.
Zhang Y, Yuan T, Li Z, Luo C, Wu Y, Zhang J, Zhang X, Fan W. Hyaluronate-based self-stabilized nanoparticles for immunosuppression reversion and immunochemotherapy in osteosarcoma remedy. ACS Biomater Sci Eng. 2021;7:1515–25.
Xi Y, Jiang T, Yu Y, Yu J, Xue M, Xu N, Wen J, Wang W, He H, Shen Y, et al. Twin focusing on curcumin loaded alendronate-hyaluronan- octadecanoic acid micelles for enhancing osteosarcoma remedy. Int J Nanomed. 2019;14:6425–37.
Xu Y, Qi J, Solar W, Zhong W, Wu H. Therapeutic results of zoledronic acid-loaded hyaluronic acid/polyethylene glycol/nano-hydroxyapatite nanoparticles on osteosarcoma. Entrance Bioeng Biotechnol. 2022;10: 897641.
Xu Y, Zhang Z, Wang H, Zhong W, Solar C, Solar W, Wu H. Zoledronic acid-loaded hybrid hyaluronic acid/polyethylene glycol/nano-hydroxyapatite nanoparticle: novel fabrication and security verification. Entrance Bioeng Biotechnol. 2021;9: 629928.
Deutscher SL. Phage show in molecular imaging and prognosis of most cancers. Chem Rev. 2010;110:3196–211.
Lee S, Xie J, Chen X. Peptide-based probes for focused molecular imaging. Biochemistry. 2010;49:1364–76.
Fu Y, Rathod D, Abo-Ali EM, Dukhande VV, Patel Okay. EphA2-receptor focused PEGylated nanoliposomes for the remedy of BRAF(V600E) mutated parent- and vemurafenib-resistant melanoma. Pharmaceutics. 2019;11:504.
Patil MA, Upadhyay AK, Hernandez-Lagunas L, Good R, Carpenter TC, Sucharov CC, Nozik-Grayck E, Kompella UB. Focused supply of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature. Artif Cells Nanomed Biotechnol. 2018;46:S1059–66.
Liu Z, Tao Z, Zhang Q, Wan S, Zhang F, Zhang Y, Wu G, Wang J. YSA-conjugated mesoporous silica nanoparticles successfully goal EphA2-overexpressing breast most cancers cells. Most cancers Chemother Pharmacol. 2018;81:687–95.
Wang JL, Liu YL, Li Y, Dai WB, Guo ZM, Wang ZH, Zhang Q. EphA2 focused doxorubicin stealth liposomes as a remedy system for choroidal neovascularization in rats. Make investments Ophthalmol Vis Sci. 2012;53:7348–57.
Haghiralsadat F, Amoabediny G, Naderinezhad S, Nazmi Okay, De Boer JP, Zandieh-Doulabi B, Forouzanfar T, Helder MN. EphA2 focused doxorubicin-nanoliposomes for osteosarcoma remedy. Pharm Res. 2017;34:2891–900.
Haghiralsadat F, Amoabediny G, Naderinezhad S, Zandieh-Doulabi B, Forouzanfar T, Helder MN. Codelivery of doxorubicin and JIP1 siRNA with novel EphA2-targeted PEGylated cationic nanoliposomes to beat osteosarcoma multidrug resistance. Int J Nanomed. 2018;13:3853–66.
Dong Q, Zhu X, Dai C, Zhang X, Gao X, Wei J, Sheng Y, Zheng Y, Yu J, Xie L, et al. Osteopontin promotes epithelial-mesenchymal transition of hepatocellular carcinoma via regulating vimentin. Oncotarget. 2016;7:12997–3012.
Li S, Zhang T, Xu W, Ding J, Yin F, Xu J, Solar W, Wang H, Solar M, Cai Z, Hua Y. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis. Theranostics. 2018;8:1361–75.
Satelli A, Brownlee Z, Mitra A, Meng QH, Li S. Circulating tumor cell enumeration with a mix of epithelial cell adhesion molecule- and cell-surface vimentin-based strategies for monitoring breast most cancers therapeutic response. Clin Chem. 2015;61:259–66.
Satelli A, Li S. Vimentin in most cancers and its potential as a molecular goal for most cancers remedy. Cell Mol Life Sci. 2011;68:3033–46.
Satelli A, Mitra A, Cutrera JJ, Devarie M, Xia X, Ingram DR, Dibra D, Somaiah N, Torres KE, Ravi V, et al. Common marker and detection device for human sarcoma circulating tumor cells. Most cancers Res. 2014;74:1645–50.
Qiu R, Solar D, Bai Y, Li J, Wang L. Utility of tumor-targeting peptide-decorated polypeptide nanoparticles with doxorubicin to deal with osteosarcoma. Drug Deliv. 2020;27:1704–17.
Liu S, Ou H, Li Y, Zhang H, Liu J, Lu X, Kwok RTK, Lam JWY, Ding D, Tang BZ. Planar and twisted molecular construction results in the excessive brightness of semiconducting polymer nanoparticles for NIR-IIa fluorescence imaging. J Am Chem Soc. 2020;142:15146–56.
Zhang W, Solar X, Huang T, Pan X, Solar P, Li J, Zhang H, Lu X, Fan Q, Huang W. 1300 nm absorption two-acceptor semiconducting polymer nanoparticles for NIR-II photoacoustic imaging system guided NIR-II photothermal remedy. Chem Commun (Camb). 2019;55:9487–90.
Yin C, Wen G, Liu C, Yang B, Lin S, Huang J, Zhao P, Wong SHD, Zhang Okay, Chen X, et al. Natural semiconducting polymer nanoparticles for photoacoustic labeling and monitoring of stem cells within the second near-infrared window. ACS Nano. 2018;12:12201–11.
Li J, Rao J, Pu Okay. Current progress on semiconducting polymer nanoparticles for molecular imaging and most cancers phototherapy. Biomaterials. 2018;155:217–35.
Zhou H, Zeng X, Li A, Zhou W, Tang L, Hu W, Fan Q, Meng X, Deng H, Duan L, et al. Upconversion NIR-II fluorophores for mitochondria-targeted most cancers imaging and photothermal remedy. Nat Commun. 2020;11:6183.
Yuan Y, Diao S, Ni X, Zhang D, Yi W, Jian C, Hu X, Li D, Yu A, Zhou W, Fan Q. Peptide-based semiconducting polymer nanoparticles for osteosarcoma-targeted NIR-II fluorescence/NIR-I photoacoustic dual-model imaging and photothermal/photodynamic therapies. J Nanobiotechnol. 2022;20:44.
Bayani J, Selvarajah S, Maire G, Vukovic B, Al-Romaih Okay, Zielenska M, Squire JA. Genomic mechanisms and measurement of structural and numerical instability in most cancers cells. Semin Most cancers Biol. 2007;17:5–18.
Kang ES, Kim YT, Ko YS, Kim NH, Cho G, Huh YH, Kim JH, Nam J, Thach TT, Youn D, et al. Peptide-programmable nanoparticle superstructures with tailor-made electrocatalytic exercise. ACS Nano. 2018;12:6554–62.
Lin P, Xue Y, Mu X, Shao Y, Lu Q, Jin X, Yinwang E, Zhang Z, Zhou H, Teng W, et al. Tumor personalized 2D supramolecular nanodiscs for ultralong tumor retention and exact photothermal remedy of extremely heterogeneous cancers. Small. 2022;18: e2200179.
Qu X, Qiu P, Zhu Y, Yang M, Mao C. Guiding nanomaterials to tumors for breast most cancers precision medication: from tumor-targeting small-molecule discovery to focused nanodrug supply. NPG Asia Mater. 2017. https://doi.org/10.1038/am.2017.196.
Kusoglu A, Biray Avci C. Most cancers stem cells: a quick assessment of the present standing. Gene. 2019;681:80–5.
Zhang C, Ma Okay, Li WY. Cinobufagin suppresses the traits of osteosarcoma most cancers cells by inhibiting the IL-6-OPN-STAT3 pathway. Drug Des Devel Remedy. 2019;13:4075–90.
Liang X, Xu C, Wang W, Li X. The DNMT1/miR-34a axis is concerned within the stemness of human osteosarcoma cells and derived stem-like cells. Stem Cells Int. 2019;2019:7028901.
Takahashi N, Nobusue H, Shimizu T, Sugihara E, Yamaguchi-Iwai S, Onishi N, Kunitomi H, Kuroda T, Saya H. ROCK inhibition induces terminal adipocyte differentiation and suppresses tumorigenesis in chemoresistant osteosarcoma cells. Most cancers Res. 2019;79:3088–99.
Subramaniam D, Angulo P, Ponnurangam S, Dandawate P, Ramamoorthy P, Srinivasan P, Iwakuma T, Weir SJ, Chastain Okay, Anant S. Suppressing STAT5 signaling impacts osteosarcoma development and stemness. Cell Dying Dis. 2020;11:149.
Zhao B, Luo J, Wang Y, Zhou L, Che J, Wang F, Peng S, Zhang G, Shang P. metformin suppresses self-renewal means and tumorigenicity of osteosarcoma stem cells through reactive oxygen species-mediated apoptosis and autophagy. Oxid Med Cell Longev. 2019;2019:9290728.
Li J, Zhong XY, Li ZY, Cai JF, Zou L, Li JM, Yang T, Liu W. CD133 expression in osteosarcoma and derivation of CD133(+) cells. Mol Med Rep. 2013;7:577–84.
Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, Fazioli F, Pirozzi G, Papaccio G. Human major bone sarcomas include CD133+ most cancers stem cells displaying excessive tumorigenicity in vivo. FASEB J. 2011;25:2022–30.
Suva ML, Riggi N, Stehle JC, Baumer Okay, Tercier S, Joseph JM, Suva D, Clement V, Provero P, Cironi L, et al. Identification of most cancers stem cells in Ewing’s sarcoma. Most cancers Res. 2009;69:1776–81.
Gui Okay, Zhang X, Chen F, Ge Z, Zhang S, Qi X, Solar J, Yu Z. Lipid-polymer nanoparticles with CD133 aptamers for focused supply of all-trans retinoic acid to osteosarcoma initiating cells. Biomed Pharmacother. 2019;111:751–64.
Gars E, Yousry SM, Babu D, Kurzer JH, George TI, Gratzinger D. A replicable CD271+ mesenchymal stromal cell density rating: bringing the dysfunctional myelodysplastic syndrome area of interest to the diagnostic laboratory. Leuk Lymphoma. 2017;58:1730–2.
Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, et al. Human melanoma-initiating cells categorical neural crest nerve development issue receptor CD271. Nature. 2010;466:133–7.
Tian J, Li X, Si M, Liu T, Li J. CD271+ osteosarcoma cells show stem-like properties. PLoS ONE. 2014;9: e98549.
Tian J, Gu Y, Li Y, Liu T. CD271 antibody-functionalized HGNs for focused photothermal remedy of osteosarcoma stem cells. Nanotechnology. 2020;31: 305707.
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbanzadeh A, Fotouhi A, Bisadi A, Aghebati-Maleki L, Baradaran B. Prospects for the involvement of most cancers stem cells within the pathogenesis of osteosarcoma. J Cell Physiol. 2020;235:4167–82.
Biswas S, Torchilin VP. Nanopreparations for organelle-specific supply in most cancers. Adv Drug Deliv Rev. 2014;66:26–41.
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Most cancers nanotechnology: the affect of passive and energetic focusing on within the period of recent most cancers biology. Adv Drug Deliv Rev. 2014;66:2–25.
Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug supply: an rising strategy for most cancers remedy. Drug Discov Right this moment. 2012;17:1044–52.
Yang N, Ding Y, Zhang Y, Wang B, Zhao X, Cheng Okay, Huang Y, Taleb M, Zhao J, Dong WF, et al. Floor functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted remedy. ACS Appl Mater Interfaces. 2018;10:22963–73.
Yurkin ST, Wang Z. Cell membrane-derived nanoparticles: rising scientific alternatives for focused drug supply. Nanomedicine (Lond). 2017;12:2007–19.
Gao C, Lin Z, Jurado-Sanchez B, Lin X, Wu Z, He Q. Stem cell membrane-coated nanogels for extremely environment friendly in vivo tumor focused drug supply. Small. 2016;12:4056–62.
Zhang J, Miao Y, Ni W, Xiao H, Zhang J. Most cancers cell membrane coated silica nanoparticles loaded with ICG for tumour particular photothermal remedy of osteosarcoma. Artif Cells Nanomed Biotechnol. 2019;47:2298–305.
Wang Y, Zhang L, Zhao G, Zhang Y, Zhan F, Chen Z, He T, Cao Y, Hao L, Wang Z, et al. Homologous focusing on nanoparticles for enhanced PDT towards osteosarcoma HOS cells and the associated molecular mechanisms. J Nanobiotechnol. 2022;20:83.
Fu Y, He G, Liu Z, Wang J, Li M, Zhang Z, Bao Q, Wen J, Zhu X, Zhang C, Zhang W. DNA base pairing-inspired supramolecular nanodrug camouflaged by cancer-cell membrane for osteosarcoma remedy. Small. 2022;18: e2202337.
Cai JX, Liu JH, Wu JY, Li YJ, Qiu XH, Xu WJ, Xu P, Xiang DX. Hybrid cell membrane-functionalized biomimetic nanoparticles for focused remedy of osteosarcoma. Int J Nanomed. 2022;17:837–54.
Hu C, Lei T, Wang Y, Cao J, Yang X, Qin L, Liu R, Zhou Y, Tong F, Umeshappa CS, Gao H. Phagocyte-membrane-coated and laser-responsive nanoparticles management major and metastatic most cancers by inducing anti-tumor immunity. Biomaterials. 2020;255: 120159.
Zhang W, Wang M, Tang W, Wen R, Zhou S, Lee C, Wang H, Jiang W, Delahunty IM, Zhen Z, et al. Nanoparticle-laden macrophages for tumor-tropic drug supply. Adv Mater. 2018;30: e1805557.
Momcilovic M, Jones A, Bailey ST, Waldmann CM, Li R, Lee JT, Abdelhady G, Gomez A, Holloway T, Schmid E, et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung most cancers. Nature. 2019;575:380–4.
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell dying. Nat Rev Mol Cell Biol. 2020;21:85–100.
Wong YC, Kim S, Peng W, Krainc D. Regulation and performance of mitochondria-lysosome membrane contact websites in mobile homeostasis. Developments Cell Biol. 2019;29:500–13.
Lu P, Bruno BJ, Rabenau M, Lim CS. Supply of medicine and macromolecules to the mitochondria for most cancers remedy. J Management Launch. 2016;240:38–51.
He G, Ma Y, Zhu Y, Yong L, Liu X, Wang P, Liang C, Yang C, Zhao Z, Hai B, et al. Cross discuss between autophagy and apoptosis contributes to ZnO nanoparticle-induced human osteosarcoma cell dying. Adv Healthc Mater. 2018;7: e1800332.
Pan X, He G, Hai B, Liu Y, Bian L, Yong L, Zhang H, Yang C, Du C, Mao T, et al. VPS34 regulates dynamin to find out the endocytosis of mitochondria-targeted zinc oxide nanoparticles in human osteosarcoma cells. J Mater Chem B. 2021;9:2641–55.
Jin J, Yuan P, Yu W, Lin J, Xu A, Xu X, Lou J, Yu T, Qian C, Liu B, et al. Mitochondria-targeting polymer micelle of dichloroacetate induced pyroptosis to boost osteosarcoma immunotherapy. ACS Nano. 2022. https://doi.org/10.1021/acsnano.2c00192.
Noy JM, Lu H, Hogg PJ, Yang JL, Stenzel M. Direct polymerization of the arsenic drug PENAO to acquire nanoparticles with excessive thiol-reactivity and anti-cancer effectivity. Bioconjug Chem. 2018;29:546–58.
Zeng WN, Yu QP, Wang D, Liu JL, Yang QJ, Zhou ZK, Zeng YP. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotechnology. 2021;19:79.
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria-targeting, intracellular supply of native proteins utilizing biodegradable silica nanoparticles. Angew Chem Int Ed Engl. 2019;58:7657–61.
Sahin A, Eke G, Buyuksungur A, Hasirci N, Hasirci V. Nuclear focusing on peptide-modified, DOX-loaded, PHBV nanoparticles improve drug efficacy by focusing on to Saos-2 cell nuclear membranes. J Biomater Sci Polym Ed. 2018;29:507–19.
Kang B, Mackey MA, El-Sayed MA. Nuclear focusing on of gold nanoparticles in most cancers cells induces DNA harm, inflicting cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132:1517–9.
Liu S, Zhang Q, He H, Yi M, Tan W, Guo J, Xu B. Intranuclear nanoribbons for selective killing of osteosarcoma cells. Angew Chem Int Ed Engl. 2022;61: e202210568.
Bures Z, Mamo T, Vlcek M, Lu L, Yaszemski MJ. Sign protein-functionalized gold nanoparticles for nuclear focusing on into osteosarcoma cells to be used in radiosensitization experiments. Neoplasma. 2020;67:576–83.
Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. Regulation of transport pathways in tumor vessels: position of tumor kind and microenvironment. Proc Natl Acad Sci U S A. 1998;95:4607–12.
Shubik P. Vascularization of tumors: a assessment. J Most cancers Res Clin Oncol. 1982;103:211–26.
Haley B, Frenkel E. Nanoparticles for drug supply in most cancers remedy. Urol Oncol. 2008;26:57–64.
Torchilin VP. Focused pharmaceutical nanocarriers for most cancers remedy and imaging. AAPS J. 2007;9:E128-147.
Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–70.
Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar methods for most cancers focused drug supply. Pharm Res. 2007;24:1029–46.
Chakraborty A, Das A, Raha S, Barui A. Measurement-dependent apoptotic exercise of gold nanoparticles on osteosarcoma cells correlated with SERS sign. J Photochem Photobiol B. 2020;203: 111778.
Wang S, Li B, Zhang H, Chen J, Solar X, Xu J, Ren T, Zhang Y, Ma C, Guo W, Liu Okay. Bettering bioavailability of hydrophobic prodrugs via supramolecular nanocarriers based mostly on recombinant proteins for osteosarcoma remedy. Angew Chem Int Ed Engl. 2021;60:11252–6.
Fytianos Okay, Rodriguez-Lorenzo L, Clift MJ, Clean F, Vanhecke D, von Garnier C, Petri-Fink A, Rothen-Rutishauser B. Uptake effectivity of floor modified gold nanoparticles doesn’t correlate with practical adjustments and cytokine secretion in human dendritic cells in vitro. Nanomedicine. 2015;11:633–44.
Tian Y, Yin H, Xu H. Enhanced pro-apoptotic impact of tetrandrine loaded nanoparticles towards osteosarcoma cells. Curr Drug Deliv. 2016;13:946–52.
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an rising remedy modality for most cancers. Nat Rev Drug Discov. 2008;7:771–82.
Herda LM, Hristov DR, Lo Giudice MC, Polo E, Dawson KA. Mapping of molecular construction of the nanoscale floor in bionanoparticles. J Am Chem Soc. 2017;139:111–4.
Salvati A, Pitek AS, Monopoli MP, Prapainop Okay, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA. Transferrin-functionalized nanoparticles lose their focusing on capabilities when a biomolecule corona adsorbs on the floor. Nat Nanotechnol. 2013;8:137–43.