Hutson, M. Has synthetic intelligence grow to be alchemy? Science 360, 478–478 (2018).
Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501 (2022).
Mehonic, A. & Kenyon, A. J. Mind-inspired computing wants a grasp plan. Nature 604, 255–260 (2022).
Salahuddin, S., Ni, Ok. & Datta, S. The period of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).
Kendall, J. D. & Kumar, S. The constructing blocks of a brain-inspired laptop. Appl. Phys. Rev. 7, 011305 (2020).
Ambrogio, S. et al. Equal-accuracy accelerated neural-network coaching utilizing analogue reminiscence. Nature 558, 60–67 (2018).
Yu, S. Neuro-inspired computing with rising nonvolatile reminiscence. Proc. IEEE 106, 260–285 (2018).
Zhou, Z. et al. Edge intelligence: paving the final mile of synthetic intelligence with edge computing. Proc. IEEE 107, 1738–1762 (2019).
Keshavarzi, A., Ni, Ok., Hoek, W. V. D., Datta, S. & Raychowdhury, A. Ferroelectronics for edge intelligence. IEEE Micro 40, 33–48 (2020).
Yao, P. et al. Absolutely hardware-implemented memristor convolutional neural community. Nature 577, 641–646 (2020).
Demasius, Ok.-U., Kirschen, A. & Parkin, S. Power-efficient memcapacitor units for neuromorphic computing. Nat. Electron. 4, 748–756 (2021).
Chen, W. et al. CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors. Nat. Electron. 2, 420–428 (2019).
Cheng, C. et al. In-memory computing with rising nonvolatile reminiscence units. Sci. China Inf. Sci. 64, 221402 (2021).
Li, C. et al. Analogue sign and picture processing with giant memristor crossbars. Nat. Electron. 1, 52–59 (2018).
Müller, J. et al. Ferroelectricity in easy binary ZrO2 and HfO2. Nano Lett. 12, 4318–4323 (2012).
Böscke, T. S., Müller, J., Bräuhaus, D., Schröder, U. & Böttger, U. Ferroelectricity in hafnium oxide skinny movies. Appl. Phys. Lett. 99, 102903 (2011).
Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin movies grown straight on silicon. Nature 580, 478–482 (2020).
Cheema, S. S. et al. Emergent ferroelectricity in subnanometer binary oxide movies on silicon. Science 376, 648–652 (2022).
Gao, Z. et al. Identification of ferroelectricity in a capacitor with ultra-thin (1.5-nm) Hf0.5Zr0.5O2 movie. IEEE Electron Machine Lett. 42, 1303–1306 (2021).
Khan, A. I., Keshavarzi, A. & Datta, S. The way forward for ferroelectric field-effect transistor know-how. Nat. Electron. 3, 588–597 (2020).
Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The basics and purposes of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022).
Jerry, M. et al. Ferroelectric FET analog synapse for acceleration of deep neural community coaching. In 2017 IEEE Worldwide Electron Gadgets Assembly (IEDM) 6.2.1–6.2.4. (IEEE, 2017).
Ni, Ok. et al. SoC logic suitable multi-bit FeMFET weight cell for neuromorphic purposes. In 2018 IEEE Worldwide Electron Gadgets Assembly (IEDM) 13.2.1–13.2.4. (IEEE, 2018).
Solar, X., Wang, P., Ni, Ok., Datta, S. & Yu, S. Exploiting hybrid precision for coaching and inference: a 2T-1FeFET based mostly analog synaptic weight cell. In 2018 IEEE Worldwide Electron Gadgets Assembly (IEDM) 3.1.1–3.1.4. (IEEE, 2018).
Tong, L. et al. 2D materials-based homogeneous transistor-memory structure for neuromorphic {hardware}. Science 373, 1353–1358 (2021).
Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).
Luo, Q. et al. A extremely CMOS suitable hafnia-based ferroelectric diode. Nat. Commun. 11, 1391 (2020).
Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Akinwande, D. et al. Graphene and two-dimensional supplies for silicon know-how. Nature 573, 507–518 (2019).
Liu, C. et al. Two-dimensional supplies for next-generation computing applied sciences. Nat. Nanotechnol. 15, 545–557 (2020).
Marega, M. et al. Logic-in-memory based mostly on an atomically skinny semiconductor. Nature 587, 72–77 (2020).
Chung, Y.-Y. et al. Excessive-accuracy deep neural networks utilizing a contralateral-gated analog synapse composed of ultrathin MoS2 nFET and nonvolatile charge-trap reminiscence. IEEE Electron Machine Lett. 41, 1649–1652 (2020).
Chen, L., Pam, M. E., Li, S. & Ang, Ok.-W. Ferroelectric reminiscence based mostly on two-dimensional supplies for neuromorphic computing. Neuromorph. Comput. Eng. 2, 022001 (2022).
Meng, W. et al. Three-dimensional monolithic micro-LED show pushed by atomically skinny transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).
Schram, T., Sutar, S., Radu, I. & Asselberghs, I. Challenges of wafer‐scale integration of 2D semiconductors for prime‐efficiency transistor circuits. Adv. Mater. 34, 2109796 (2022).
Waltl, M. et al. Perspective of 2D built-in digital circuits: scientific pipe dream or disruptive know-how? Adv. Mater. 34, 2201082 (2022).
Chai, Y. In-sensor computing for machine imaginative and prescient. Nature 579, 32–33 (2020).
Mennel, L. et al. Ultrafast machine imaginative and prescient with 2D materials neural community picture sensors. Nature 579, 62–66 (2020).
Li, T. et al. Epitaxial progress of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
Müller, J. et al. Ferroelectric hafnium oxide: a CMOS-compatible and extremely scalable method to future ferroelectric reminiscences. In 2013 IEEE Worldwide Electron Gadgets Assembly (IEDM) 10.8.1–10.8.4 (IEEE, 2013).
Gong, N. & Ma, T.-P. A research of endurance points in HfO2-based ferroelectric area impact transistors: cost trapping and entice era. IEEE Electron Machine Lett. 39, 15–18 (2018).
Y. Liu et al. 4.7 A 65nm ReRAM-enabled nonvolatile processor with 6× discount in restore time and 4× greater clock frequency utilizing adaptive information retention and self-write-termination nonvolatile logic. In 2016 IEEE Worldwide Strong-State Circuits Convention (ISSCC) 84–86 (IEEE, 2016).
Worldwide Roadmap for Gadgets and Methods (IRDSTM) 2021 Version (IEEE, 2021); https://irds.ieee.org/editions/2021
Krivokapic, Z. et al. 14nm ferroelectric FinFET know-how with steep subthreshold slope for extremely low energy purposes. In 2017 IEEE Worldwide Electron Gadgets Assembly (IEDM) 15.1.1–15.1.4 (IEEE, 2017).
Dünkel, S. et al. A FeFET based mostly super-low-power ultra-fast embedded NVM know-how for 22nm FDSOI and past. In 2017 IEEE Worldwide Electron Gadgets Assembly (IEDM) 19.7.1–19.7.4 (IEEE, 2017).
Zhao, C., Solar, Q., Zhang, C., Tang, Y. & Qian, F. Monocular depth estimation based mostly on deep studying: an summary. Sci. China Technol. Sci. 63, 1612–1627 (2020).
Alhashim, I. & Wonka, P. Prime quality monocular depth estimation through switch studying. Preprint at https://arxiv.org/abs/1812.11941 (2018).
Ronneberger, O., Fischer, P. & Brox, T. U-Web: convolutional networks for biomedical picture segmentation. In Medical Picture Computing and Pc-Assisted Intervention—MICCAI 234–241 (Springer, 2015).
Geiger, A., Lenz, P. & Urtasun, R. Are we prepared for autonomous driving? The KITTI imaginative and prescient benchmark suite. In 2012 IEEE Convention on Pc Imaginative and prescient and Sample Recognition (CVPR) 3354–3361 (IEEE, 2012).
Huang, G., Liu, Z., Maaten, L. V. D. & Weinberger, Ok. Q. Densely related convolutional networks. In 2017 IEEE Convention on Pc Imaginative and prescient and Sample Recognition (CVPR) 2261–2269 (IEEE, 2017).
Deng, J. et al. ImageNet: a large-scale hierarchical picture database. In 2009 IEEE Convention on Pc Imaginative and prescient and Sample Recognition (CVPR) 248–255 (IEEE, 2009).
Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Picture high quality evaluation: from error visibility to structural similarity. IEEE Trans. Picture Course of. 13, 600–612 (2004).
Eigen, D., Puhrsch, C. & Fergus, R. Depth map prediction from a single picture utilizing a multi-scale deep community. In twenty eighth Convention on Neural Info Processing Methods (NIPS) (NIPS Basis, 2014).