Weiss, A. & Dan, R. L. Sign transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).
Brownlie, R. J. & Zamoyska, R. T cell receptor signalling networks: branched, diversified and bounded. Nat. Rev. Immunol. 13, 257–269 (2013).
Chakraborty, A. Okay. & Weiss, A. Insights into the initiation of TCR signaling. Nat. Immunol. 15, 798–807 (2014).
Xu, X., Li, H. & Xu, C. Structural understanding of T cell receptor triggering. Cell. Mol. Immunol. 17, 193–202 (2020).
Schamel, W. W., Alarcon, B. & Minguet, S. The TCR is an allosterically regulated macromolecular equipment altering its conformation whereas working. Immunol. Rev. 291, 8–25 (2019).
Lee, M. S. et al. A mechanical change {couples} T cell receptor triggering to the cytoplasmic juxtamembrane areas of CD3ζζ. Immunity 43, 227–239 (2015).
Feng, Y., Reinherz, E. L. & Lang, M. J. αβ T cell receptor mechanosensing forces out serial engagement. Traits Immunol. 39, 596–609 (2018).
Mckeithan, T. W. Kinetic proofreading in T-cell receptor sign transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1992).
Rabinowitz, J. D., Beeson, C., Lyons, D. S. & Mcconnell, D. H. M. Kinetic discrimination in T-cell activation. Proc. Natl Acad. Sci. USA 93, 1401–1405 (1996).
Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions decide T-cell responsiveness. Nature 464, 932–936 (2010).
Huppa, J. B. et al. TCR–peptide–MHC interactions in situ present accelerated kinetics and elevated affinity. Nature 463, 963–967 (2010).
Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).
Choudhuri, Okay., Wiseman, D., Brown, M. H., Gould, Okay. G. & Der Merwe, P. A. V. T-cell receptor triggering is critically depending on the size of its peptide-MHC ligand. Nature 436, 578–582 (2005).
Cai, H. et al. Full management of ligand positioning reveals spatial thresholds for T-cell receptor triggering. Nat. Nanotechnol. 13, 610–617 (2018).
Solar, L. et al. DNA-edited ligand positioning on crimson blood cells to allow optimized T-cell activation for adoptive immunotherapy. Angew. Chem. Int. Ed. 59, 14842–14853 (2020).
Garcia, Okay. C. et al. An alphabeta T-cell receptor construction at 2.5 Å and its orientation within the TCR–MHC complicated. Science 274, 209–219 (1996).
Birnbaum, M. E. et al. Deconstructing the peptide–MHC specificity of T-cell recognition. Cell 157, 1073–1087 (2014).
McCall, M. N., Shotton, D. M. & Barclay, A. N. Expression of soluble isoforms of rat CD45. Evaluation by electron microscopy and use in epitope mapping of anti-CD45R monoclonal antibodies. Immunology 76, 310–317 (1992).
Carbone, C. B. et al. In vitro reconstitution of T-cell receptor-mediated segregation of the CD45 phosphatase. Proc. Natl Acad. Sci. USA 114, E9338–E9345 (2017).
Chang, V. T. et al. Initiation of T cell signaling by CD45 segregation at ‘shut contacts’. Nat. Immunol. 17, 574–582 (2016).
Hermiston, M. L., Xu, Z. & Weiss, A. CD45: a crucial regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).
Davis, S. J. & van der Merwe, P. A. The kinetic-segregation mannequin: TCR triggering and past. Nat. Immunol. 7, 803–809 (2006).
Razvag, Y., Neve-Oz, Y., Sajman, J., Reches, M. & Sherman, E. Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation. Nat. Commun. 9, 732 (2018).
Li, Y.-C. et al. Innovative: mechanical forces appearing on T cells immobilized through the TCR complicated can set off TCR signaling. J. Immunol. 184, 5959–5963 (2010).
James, J. R. & Vale, R. D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487, 64–69 (2012).
Irles, C. et al. CD45 ectodomain controls interplay with GEMs and Lck exercise for optimum TCR signaling. Nat. Immunol. 4, 189–197 (2003).
Chen, B. et al. The affinity of elongated membrane-tethered ligands determines efficiency of T cell receptor triggering. Entrance. Immunol. 8, 793 (2017).
Choudhuri, Okay. & van der Merwe, P. A. Molecular mechanisms concerned in T cell receptor triggering. Semin. Immunol. 19, 255–261 (2007).
van der Merwe, P. A. & Dushek, O. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11, 47–55 (2011).
Malissen, B. & Bongrand, P. Early T cell activation: integrating biochemical, structural, and biophysical cues. Annu. Rev. Immunol. 33, 539–561 (2015).
Courtney, A. H., Lo, W.-L. & Weiss, A. TCR signaling: mechanisms of initiation and propagation. Traits Biochem. Sci. 43, 108–123 (2018).
Goodman, R. P. et al. Fast chiral meeting of inflexible DNA constructing blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).
Lin, M. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. Int. Ed. 54, 2151–2155 (2015).
Li, J. et al. Cell-membrane-anchored DNA nanoplatform for programming mobile interactions. J. Am. Chem. Soc. 141, 18013–18020 (2019).
Jung, Y. et al. Three-dimensional localization of T-cell receptors in relation to microvilli utilizing a mixture of superresolution microscopies. Proc. Natl Acad. Sci. USA 113, E5916–E5924 (2016).
Yi, J. C. & Samelson, L. E. Microvilli set the stage for T-cell activation. Proc. Natl Acad. Sci. USA 113, 11061–11062 (2016).
Du, Y. et al. Ligand dilution evaluation facilitates aptamer binding characterization on the single-molecule stage. Angew. Chem. Int. Ed. 7, e202215387 (2022).
Huse, M. et al. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27, 76–88 (2007).
Armstrong, J. Okay., Wenby, R. B., Meiselman, H. J. & Fisher, T. C. The hydrodynamic radii of macromolecules and their impact on crimson blood cell aggregation. Biophys. J. 87, 4259–4270 (2004).
Zehn, D., Lee, S. Y. & Bevan, M. J. Full however curtailed T-cell response to very low-affinity antigen. Nature 458, 211–214 (2009).
Regulation, C. C. et al. Expression and characterization of recombinant soluble human CD3 molecules: presentation of antigenic epitopes outlined on the native TCR–CD3 complicated. Int. Immunol. 14, 389–400 (2002).
Cohen, S. & Milstein, C. Construction of antibody molecules. Nature 214, 449–452 (1967).
Mosayebi, M., Louis, A. A., Doye, J. P. Okay. & Ouldridge, T. E. Power-induced rupture of a DNA duplex: from fundamentals to drive sensors. ACS Nano 9, 11993–12003 (2015).
Furukawa, T., Itoh, M., Krueger, N. X., Streuli, M. & Saito, H. Particular interplay of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc. Natl Acad. Sci. USA 91, 10928–10932 (1994).
Hegedus, Z. et al. Contribution of kinases and the CD45 phosphatase to the technology of tyrosine phosphorylation patterns within the T cell receptor complicated ζ chain. Immunol. Lett. 67, 31–39 (1999).
Straus, D. B. & Weiss, A. The CD3 chains of the T cell antigen receptor affiliate with the ZAP-70 tyrosine kinase and are tyrosine phosphorylated after receptor stimulation. J. Exp. Med. 178, 1523–1530 (1993).
Chan, A. C., Iwashima, M., Turck, C. W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71, 649–662 (1992).
Sherman, E. et al. Useful nanoscale group of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–720 (2011).
Yokosuka, T. et al. Newly generated T cell receptor microclusters provoke and maintain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).
Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology utilizing strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).
Stone, J. D., Chervin, A. S. & Kranz, D. M. T cell receptor binding affinities and kinetics: impression on T cell exercise and specificity. Immunology 126, 165–176 (2009).
Valitutti, S., Müller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a number of peptide–MHC complexes. Nature 375, 148–151 (1995).