Zhao, Q., Liu, X., Stalin, S., Khan, Okay. & Archer, L. A. Strong-state polymer electrolytes with in-built quick interfacial transport for secondary lithium batteries. Nat. Vitality 4, 365–373 (2019).
Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).
Zou, Z. et al. Cellular ions in composite solids. Chem. Rev. 120, 4169–4221 (2020).
Tian, Y. et al. Guarantees and challenges of next-generation ‘past Li+’ batteries for electrical automobiles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).
Terabe, Okay., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic change. Nature 433, 47–50 (2005).
Yao, Y. et al. Sodium ion batteries: towards excessive vitality density all solid-state sodium batteries with wonderful flexibility. Adv. Vitality Mater. 10, 2070055 (2020).
Wu, J. et al. Lowering the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Vitality Environ. Sci. 14, 12–36 (2021).
Xu, Okay. Electrolytes and interphases in Li+ batteries and past. Chem. Rev. 114, 11503–11618 (2014).
Huang, Y.-F. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric fixed largely promotes the dissociation of lithium salts to attain excessive ionic conductivity. Vitality Environ. Sci. 14, 6021–6029 (2021).
Lei, D. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium steel battery. Nat. Commun. 10, 4244 (2019).
Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from ‘ceramic-in-polymer’ to ‘polymer-in-ceramic’. Nano Vitality 46, 176–184 (2018).
Zheng, J., Wang, P., Liu, H. & Hu, Y.-Y. Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes. ACS Appl. Vitality Mater. 2, 1452–1459 (2019).
Huang, Y. et al. Enhanced piezoelectricity from extremely polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 12, 675 (2021).
Mi, J. et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long biking high-voltage lithium steel solid-state batteries. Vitality Storage Mater. 48, 375–383 (2022).
Liu, G. et al. Stopping dendrite progress by a gentle piezoelectric materials. ACS Mater. Lett. 1, 498–505 (2019).
Gao, T. et al. Piezoelectric mechanism and a compliant movie to successfully suppress dendrite progress. ACS Appl. Mater. Interfaces 12, 51448–51458 (2020).
Liu, S. et al. Strong-state lithium steel batteries with prolonged biking enabled by dynamic adaptive solid-state interfaces. Adv. Mater. 33, e2008084 (2021).
Zhang, X. et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces excessive ionic conductivity, mechanical energy, and thermal stability of strong composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017).
Fan, L.-Z., He, H. & Nan, C.-W. Tailoring inorganic–polymer composites for the mass manufacturing of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021).
Maier, J. House cost areas in strong two part programs and their conduction contribution — II Contact equilibrium on the interface of two ionic conductors and the associated conductivity impact. J. Phys. Chem. Solids 89, 355–362 (1985).
De Klerk, N. J. J. & Wagemaker, M. House-charge layers in all-solid-state batteries; vital or negligible? ACS Appl. Vitality Mater. 1, 5609–5618 (2018).
Jiang, B. et al. Barium titanate on the nanoscale: managed synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019).
Kalinin, S. V., Johnson, C. Y. & Bonnell, D. A. Area polarity and temperature induced potential inversion on the BaTiO3 (100) floor. J. Appl. Phys. 91, 3816–3823 (2002).
Guo, Y. et al. Shaping Li deposits from wild dendrites to common crystals by way of the ferroelectric impact. Nano Lett. 20, 7680–7687 (2020).
Wang, C. et al. Excessive dielectric barium titanate porous scaffold for environment friendly Li steel biking in anode-free cells. Nat. Commun. 12, 6536 (2021).
Takada, Okay. et al. Interfacial phenomena in solid-state lithium battery with sulfide strong electrolyte. Strong State Ion. 225, 594–597 (2012).
Wu, B. et al. Interfacial behaviours between lithium ion conductors and electrode supplies in varied battery programs. J. Mater. Chem. A 4, 15266–15280 (2016).
Yada, C. et al. A high-throughput method creating lithium-niobium-tantalum oxides as electrolyte/cathode interlayers for high-voltage all-solid-state lithium batteries. J. Electrochem. Soc. 162, A722–A726 (2015).
Xia, S. et al. Dynamic regulation of lithium dendrite progress with electromechanical coupling impact of sentimental BaTiO3 ceramic nanofiber movies. ACS Nano 15, 3161–3170 (2021).
Jacob, M. M. E. et al. FTIR research of DMF plasticized polyvinyledene fluoride primarily based polymer electrolytes. Electrochim. Acta 45, 1701–1706 (2000).
Yang, Okay., Chen, L., Ma, J., He, Y.-B. & Kang, F. Progress and perspective of Li1+xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries. InfoMat. 3, 1195–1217 (2021).
Guo, W. et al. Blended ion and electron‐conducting scaffolds for prime‐price lithium steel anodes. Adv. Mater. 9, 1900193 (2019).
Li, S. et al. Manipulation of cost switch in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes. Nano Vitality 35, 92–100 (2017).
Liu, Z. et al. Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p–n heterojunction. Adv. Funct. Mater. 29, 1807279 (2019).
Su, R. et al. Silver-modified nanosized ferroelectrics as a novel photocatalyst. Small 11, 202–207 (2015).
Zhu, P., Chen, Y. & Shi, J. Piezocatalytic tumor remedy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv. Mater. 32, 2001976 (2020).
Ding, J. F. et al. Non-solvating and low-dielectricity cosolvent for anion-derived strong electrolyte interphases in lithium steel batteries. Angew. Chem. Int. Ed. 60, 11442–11447 (2021).
Zheng, J., Tang, M. & Hu, Y.-Y. Lithium ion pathway inside Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016).
Zheng, J. & Hu, Y.-Y. New insights into the compositional dependence of Li+ transport in polymer–ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018).
Yang, Okay. et al. Steady interface chemistry and a number of ion transport of composite electrolyte contribute to ultra-long biking solid-state LiNi0.8Co0.1Mn0.1O2/lithium steel batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021).
Yang, H. et al. Chemical interplay and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium steel batteries. J. Mater. Chem. A 8, 7261–7272 (2020).
Emery, J. et al. Polaronic results on lithium movement in intercalated perovskite lithium lanthanum titanate noticed by 7Li NMR and impedance spectroscopy. J. Phys. Condens. Matter 11, 10401–10417 (1999).
Duan, H. et al. Dendrite-free Li-metal battery enabled by a skinny uneven strong electrolyte with engineered layers. J. Am. Chem. Soc. 140, 82–85 (2018).
Du, G. et al. Low-operating temperature, high-rate and sturdy solid-state sodium-ion battery primarily based on polymer electrolyte and Prussian blue cathode. Adv. Vitality Mater. 10, 1903351 (2020).
Liang, J. Y. et al. Mitigating interfacial potential drop of cathode-solid electrolyte by way of ionic conductor layer to boost interface dynamics for strong batteries. J. Am. Chem. Soc. 140, 6767–6770 (2018).
Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).
Yada, C. et al. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Vitality Mater. 4, 1301416 (2014).
Wang, L. et al. In-situ visualization of the space-charge-layer impact on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).
Xue, C., Zhang, X., Wang, S., Li, L. & Nan, C. W. Natural–natural composite electrolyte permits ultralong cycle life in solid-state lithium steel batteries. ACS Appl. Mater. Interfaces 12, 24837–24844 (2020).
Zhang, X. et al. Self-suppression of lithium dendrite in all-solid-state lithium steel batteries with poly(vinylidene difluoride)-based strong electrolytes. Adv. Mater. 31, 1806082 (2019).
Chu, H. et al. Attaining three-dimensional lithium sulfide progress in lithium-sulfur batteries utilizing high-donor-number anions. Nat. Commun. 10, 188 (2019).