Saturday, October 14, 2023
HomeiOS Developmentpython - The right way to convert kivy utilizing saved mannequin(.h5) to...

python – The right way to convert kivy utilizing saved mannequin(.h5) to apk?


Be aware: Code works advantageous in home windows however crashes in android

I transformed the kivy app to apk utilizing buildozer in google colab that works advantageous however after I set up apk the app crashes.

I’ve fundamental.py and NewAction3.h5 in /content material folder of google colab. I used buildozer to generate buildozer.spec.
I’m utilizing tensorflow,mediapipe,opencv-python,numpy,kivy,kivymd
I’m additionally utilizing digital camera to seize video and retailer after which use that in cell.

**beneath is my buildozer.spec:**
`
   [app]
    title = My Utility
    bundle.title = myapp
    bundle.area = org.take a look at
    supply.dir = .
    supply.include_exts = py,png,jpg,kv,atlas,h5
    model = 0.1
    necessities = python3,kivy,kivymd,mediapipe,tensorflow,numpy,opencv-python
    orientation = portrait
    osx.python_version = 3
    osx.kivy_version = 1.9.1
    fullscreen = 0
    android.archs = arm64-v8a, armeabi-v7a
    android.allow_backup = True
    ios.kivy_ios_url = https://github.com/kivy/kivy-ios
    ios.kivy_ios_branch = grasp
    ios.ios_deploy_url = https://github.com/phonegap/ios-deploy
    ios.ios_deploy_branch = 1.10.0
    ios.codesign.allowed = false
    
    [buildozer]
    log_level = 2
    warn_on_root = 1

`
Beneath is my fundamental.py code:
    from kivymd.app import MDApp
    from kivymd.uix.boxlayout import MDBoxLayout
    from kivymd.uix.button import MDRaisedButton
    from kivy.uix.picture import Picture
    from kivy.graphics.texture import Texture
    import cv2
    from kivy.clock import Clock
    import numpy as np
    import mediapipe
    import cv2
    from tensorflow.keras.fashions import load_model
    from kivymd.uix.label import MDLabel
    
    
    class MainApp(MDApp):
    def construct(self):
    structure=MDBoxLayout(orientation='vertical')
    self.picture=Picture()
    structure.add_widget(self.picture)
    self.save_img_button=MDRaisedButton(textual content="Begin Recording",pos_hint={'center_x':.5,'center_y':.5,},size_hint=(None,None))
    self.save_img_button.bind(on_press=self.take_pic)
    structure.add_widget(self.save_img_button)
    self.prediction_label = MDLabel(textual content="", halign='middle')
    structure.add_widget(self.prediction_label)
    self.seize=cv2.VideoCapture(0)
    Clock.schedule_interval(self.load_video,1.0/30.0)
    self.recording = False
    return structure
    
    def load_video(self,*args):
    if self.recording:
    ret,body=self.seize.learn()
    self.out.write(body)
    else:
    ret,body=self.seize.learn()
    self.image_frame=body
    buffer=cv2.flip(body,0).tostring()
    texture=Texture.create(dimension=(body.form[1],body.form[0]),colorfmt="bgr")
    texture.blit_buffer(buffer,colorfmt="bgr",bufferfmt="ubyte")
    self.picture.texture=texture
    
    def take_pic(self,*args):
    if not self.recording:
    self.recording = True
    self.out = cv2.VideoWriter('output.avi', cv2.VideoWriter_fourcc(*'MJPG'), 8, (640,480))
    self.save_img_button.textual content="Cease Recording"
    Clock.schedule_once(self.stop_recording, 6)
    else:
    self.recording = False
    self.out.launch()
    self.convert_video()
    self.save_img_button.textual content="Begin Recording"
    
    def stop_recording(self, *args):
    self.recording = False
    self.out.launch()
    self.convert_video()
    lstm_model = load_model('NewAction3.h5')
    self.prediction_label.textual content=self.prediction(r'converted_output.avi', lstm_model)
    self.save_img_button.textual content="Begin Recording"
    
    def convert_video(self):
    video_capture = cv2.VideoCapture('output.avi')
    frame_count = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = int(video_capture.get(cv2.CAP_PROP_FPS))
    width = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    peak = int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    
    out = cv2.VideoWriter('converted_output.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (width, peak))
    
    for i in vary(frame_count):
    ret, body = video_capture.learn()
    out.write(body)
    
    video_capture.launch()
    out.launch()
    
    def on_stop(self):
    self.seize.launch()
    
    def prediction(self,video_path, lstm_model):
    actions = ['banana', 'bar', 'basement', 'basketball', 'bath', 'bathroom', 'bear', 'beard', 'bed', 'bedroom']
    
    sequence = []
    cap = cv2.VideoCapture(video_path)  # video path
    
    mp_holistic = mediapipe.options.holistic
    with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    toskip = int(frame_count // 50)
    if toskip == 0:
    toskip = 1
    
    frame_num = 0
    whereas (cap.isOpened()):
    ret, body = cap.learn()
    cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
    frame_num = frame_num + toskip
    
    rotate video proper manner up
    >                 (h, w) = body.form[:2]
    rotpoint = (w // 2, h // 2)
    rotmat = cv2.getRotationMatrix2D(rotpoint, 180, 1.0)
    dim = (w, h)
    intermediateFrame = cv2.warpAffine(body, rotmat, dim)
    
    cropping
    dimension = intermediateFrame.form
    finalFrame = intermediateFrame[80:(size[0] - 200), 30:(dimension[1] - 30)]
    
    keypoint prediction
    picture = cv2.cvtColor(finalFrame, cv2.COLOR_BGR2RGB)  # COLOR CONVERSION BGR 2 RGB
    picture.flags.writeable = False  # Picture is now not writeable
    outcomes = holistic.course of(picture)  # Make prediction
    picture.flags.writeable = True  # Picture is now writeable
    picture = cv2.cvtColor(picture, cv2.COLOR_RGB2BGR)  # COLOR COVERSION RGB 2 BGR
    
    extract and append keypoints
    pose = np.array([[res.x, res.y, res.z, res.visibility] for res in
    outcomes.pose_landmarks.landmark]).flatten() if      outcomes.pose_landmarks else np.zeros(33 * 4)
    lh = np.array([[res.x, res.y, res.z] for res in
    outcomes.left_hand_landmarks.landmark]).flatten() if outcomes.left_hand_landmarks else np.zeros(
    21 * 3)
    rh = np.array([[res.x, res.y, res.z] for res in
    outcomes.right_hand_landmarks.landmark]).flatten() if outcomes.right_hand_landmarks else np.zeros(
    21 * 3)
    keypoints = np.concatenate([pose, lh, rh])
    sequence.append(keypoints)
    
    if len(sequence) == 50:
    cap.launch()
    break
    
    cap.launch()
    cv2.destroyAllWindows()
    sequence = np.expand_dims(sequence, axis=0)[0]
    res = lstm_model.predict(np.expand_dims(sequence, axis=0))
    print(actions[np.argmax(res)])
    return actions[np.argmax(res)]
    
    if __name__=='__main__':
    MainApp().run()



Supply hyperlink

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -
Google search engine

Most Popular

Recent Comments