Sunday, January 29, 2023
HomeNanotechnologyCustomizing supply nano-vehicles for exact mind tumor remedy | Journal of Nanobiotechnology

Customizing supply nano-vehicles for exact mind tumor remedy | Journal of Nanobiotechnology


  • Zhu D, Li Y, Zhang Z, Xue Z, Hua Z, Luo X, Liu Y. Latest advances of nanotechnology-based tumor vessel-targeting methods. J Nanobiotechnol. 2021;19(1):1–17.

    Article 

    Google Scholar
     

  • Dellacherie MO, Web optimization BR, Mooney DJ. Macroscale biomaterials methods for native immunomodulation. Nat Rev Mater. 2019;4(6):379–97.

    Article 

    Google Scholar
     

  • Zhang X, Chen J, Wang W, Li X, Tan Y, Zhang X, Qian W. Therapy of central nervous system relapse in acute promyelocytic leukemia by venetoclax: a case report. Entrance Oncol. 2021. https://doi.org/10.3389/fonc.2021.693670.

    Article 

    Google Scholar
     

  • Cao HY, Tao T, Shen XD, Bai L, Wan CL, Wu DP, Xue SL. Effectivity of anti-VEGF remedy in central nervous system AML relapse: a case report and literature evaluate. Clin Case Rep. 2022;10(2):e05367.

    Article 

    Google Scholar
     

  • Huang CW, Chuang CP, Chen YJ, Wang HY, Lin JJ, Huang CY, Huang FT. Integrin α2β1-targeting ferritin nanocarrier traverses the blood–mind barrier for efficient glioma chemotherapy. J Nanobiotechnol. 2021;19(1):1–17.

    Article 

    Google Scholar
     

  • Ho JS, Zhang Y. Wi-fi nanomedicine for mind tumors. Nat Nanotechnol. 2022;17(9):907–8.

    Article 
    CAS 

    Google Scholar
     

  • Vanner RJ, Dobson SM, Gan OI, McLeod J, Schoof EM, Grandal I, Dick JE. Multiomic profiling of central nervous system leukemia identifies mRNA translation as a therapeutic targetblocking translation to focus on B-ALL CNS illness. Blood Most cancers Discov. 2022;3(1):16–31.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Zhang S, Luo S, Tang P, Wan M, Wu D, Gao W. Ultrasound-assisted mind supply of nanomedicines for mind tumor remedy: advance and prospect. J Nanobiotechnol. 2022;20(1):1–27.

    Article 

    Google Scholar
     

  • Zhang Y, Yang WX. Tight junction between endothelial cells: the interplay between nanoparticles and blood vessels. Beilstein J Nanotechnol. 2016;7(1):675–84.

    Article 
    CAS 

    Google Scholar
     

  • Jia X, Yuan Z, Yang Y, Huang X, Han N, Liu X, Lei H. Multi-functional self-assembly nanoparticles originating from small molecule pure product for oral insulin supply by modulating tight junctions. J Nanobiotechnol. 2022;20(1):1–17.

    Article 

    Google Scholar
     

  • Liu B, Yan W, Luo L, Wu S, Wang Y, Zhong Y, Wang G. Macrophage membrane camouflaged reactive oxygen species responsive nanomedicine for effectively inhibiting the vascular intimal hyperplasia. J Nanobiotechnol. 2021;19(1):1–19.

    Article 

    Google Scholar
     

  • Mitusova Ok, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood–mind barrier for the remedy of malignant mind tumor: present standing and prospects of drug supply approaches. J Nanobiotechnol. 2022;20(1):1–40.

    Article 

    Google Scholar
     

  • Shilo M, Sharon A, Baranes Ok, Motiei M, Lellouche JPM, Popovtzer R. The impact of nanoparticle dimension on the likelihood to cross the blood-brain barrier: an in-vitro endothelial cell mannequin. J Nanobiotechnol. 2015;13(1):1–7.

    Article 
    CAS 

    Google Scholar
     

  • Wolak DJ, Thorne RG. Diffusion of macromolecules within the mind: implications for drug supply. Mol Pharm. 2013;10(5):1492–504.

    Article 
    CAS 

    Google Scholar
     

  • Wang T, Zhang H, Qiu W, Han Y, Liu H, Li Z. Biomimetic nanoparticles immediately transform immunosuppressive microenvironment for reinforcing glioblastoma immunotherapy. Bioactive supplies. 2022;16:418–32.

    Article 
    CAS 

    Google Scholar
     

  • Yang M, Li J, Gu P, Fan X. The applying of nanoparticles in most cancers immunotherapy: concentrating on tumor microenvironment. Bioactive supplies. 2021;6(7):1973–87.

    Article 
    CAS 

    Google Scholar
     

  • Aur RJ, Simone J, Hustu HO, Walters T, Borella L, Pratt C, Pinkel D. Central nervous system remedy and mixture chemotherapy of childhood lymphocytic leukemia. Blood. 1971;37(3):272–81.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Mixture of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system problems: a evaluate. J Nanobiotechnol. 2021;19(1):1–22.


    Google Scholar
     

  • Zhou F, Wen Y, Jin R, Chen H. New makes an attempt for central nervous infiltration of pediatric acute lymphoblastic leukemia. Most cancers Metastasis Rev. 2019;38(4):657–71.

    Article 

    Google Scholar
     

  • Yao H, Value TT, Cantelli G, Ngo B, Warner MJ, Olivere L, Sipkins DA. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560(7716):55–60.

    Article 
    CAS 

    Google Scholar
     

  • Elbahlawan L, Galdo AM, Ribeiro RC. Pulmonary manifestations of hematologic and oncologic ailments in youngsters. Pediatr Clin. 2021;68(1):61–80.


    Google Scholar
     

  • Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Invoice RM. Concentrating on aquaporin-4 subcellular localization to deal with central nervous system edema. Cell. 2020;181(4):784–99.

    Article 
    CAS 

    Google Scholar
     

  • Wang J, Rong Y, Ji C, Lv C, Jiang D, Ge X, Fan J. MicroRNA-421–3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor operate restoration through inhibition of mTOR in spinal wire damage. J Nanobiotechnol. 2020;18(1):1–17.

    Article 

    Google Scholar
     

  • Stewart DJ, Keating MJ, McCredie KB, Smith TL, Youness E, Murphy SG, Freireich EJ. Pure historical past of central nervous system acute leukemia in adults. Most cancers. 1981;47(1):184–96.

    Article 
    CAS 

    Google Scholar
     

  • Tian X, Fan T, Zhao W, Abbas G, Han B, Zhang Ok, Xie Z. Latest advances within the growth of nanomedicines for the therapy of ischemic stroke. Bioact Mater. 2021;6(9):2854–69.

    Article 
    CAS 

    Google Scholar
     

  • Web optimization Y, Bang S, Son J, Kim D, Jeong Y, Kim P, Kim HN. Mind physiome: an idea bridging in vitro 3D mind fashions and in silico fashions for predicting drug toxicity within the mind. Bioact Mater. 2021. https://doi.org/10.1016/j.bioactmat.2021.11.009.

    Article 

    Google Scholar
     

  • Xu G, Mahajan S, Roy I, Yong KT. Theranostic quantum dots for crossing blood–mind barrier in vitro and offering remedy of HIV-associated encephalopathy. Entrance Pharmacol. 2013;4:140.

    Article 

    Google Scholar
     

  • Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Dwelling on the sting of the CNS: meninges cell range in well being and illness. Entrance Cell Neurosci. 2021;15:703944.

    Article 
    CAS 

    Google Scholar
     

  • Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: a brand new participant in neurophysiology. Neuron. 2018;100(2):375–88.

    Article 

    Google Scholar
     

  • Zhao P, Le Z, Liu L, Chen Y. Therapeutic supply to the mind through the lymphatic vasculature. Nano Lett. 2020;20(7):5415–20.

    Article 
    CAS 

    Google Scholar
     

  • Value RA, Johnson WW. The central nervous system in childhood leukemia: I. Most cancers. 1973;31(3):520–33.

    Article 
    CAS 

    Google Scholar
     

  • Ma Z, Zhao X, Huang J, Jia X, Deng M, Cui D, Xiao C. A crucial function of periostin in B-cell acute lymphoblastic leukemia. Leukemia. 2017;31(8):1835–7.

    Article 
    CAS 

    Google Scholar
     

  • Erdener ŞE, Tang J, Kılıç Ok, Postnov D, Giblin JT, Kura S, Boas DA. Dynamic capillary stalls in reperfused ischemic penumbra contribute to damage: a hyperacute function for neutrophils in persistent visitors jams. J Cereb Blood Circulation Metab. 2021;41(2):236–52.

    Article 
    CAS 

    Google Scholar
     

  • Frishman-Levy L, Izraeli S. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for remedy. Br J Haematol. 2017;176(2):157–67.

    Article 

    Google Scholar
     

  • Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JR, Qiao Z, Potash JB. Genome-wide affiliation research of greater than 40,000 bipolar dysfunction instances offers new insights into the underlying biology. Nat Genet. 2021;53(6):817–29.

    Article 
    CAS 

    Google Scholar
     

  • Engelhardt B, Ransohoff RM. Seize, crawl, cross: the T cell code to breach the blood–mind limitations. Tendencies Immunol. 2012;33(12):579–89.

    Article 
    CAS 

    Google Scholar
     

  • Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood mind barrier integrity. Nat Commun. 2014;5(1):1–12.

    Article 
    CAS 

    Google Scholar
     

  • Gétaz EP, Miller GJ. Spinal wire involvement in continual lymphocytic leukemia. Most cancers. 1979;43(5):1858–61.

    Article 

    Google Scholar
     

  • Tavares GA, Louveau A. Meningeal lymphatics: an immune gateway for the central nervous system. Cells. 2021;10(12):3385.

    Article 
    CAS 

    Google Scholar
     

  • Yuan J, Li Y, Liu X, Nie M, Jiang W, Fan Y, Jiang R. Atorvastatin plus low-dose dexamethasone could also be efficient for leukemia-related continual subdural hematoma however not for leukemia encephalopathy: a report of three instances. Entrance Oncol. 2021;11:628927.

    Article 

    Google Scholar
     

  • Olivier JC. Drug transport to mind with focused nanoparticles. NeuroRx. 2005;2(1):108–19.

    Article 

    Google Scholar
     

  • Parvez S, Kaushik M, Ali M, Alam MM, Ali J, Tabassum H, Kaushik P. Dodging blood mind barrier with “nano” warriors: Novel technique in opposition to ischemic stroke. Theranostics. 2022;12(2):689.

    Article 
    CAS 

    Google Scholar
     

  • Kreyling WG, Fertsch-Gapp S, Schäffler M, Johnston BD, Haberl N, Pfeiffer C, Parak WJ. In vitro and in vivo interactions of chosen nanoparticles with rodent serum proteins and their penalties in biokinetics. Beilstein J Nanotechnol. 2014;5(1):1699–711.

    Article 

    Google Scholar
     

  • Zhou Q, Shao S, Wang J, Xu C, Xiang J, Piao Y, Shen Y. Enzyme-activatable polymer–drug conjugate augments tumour penetration and therapy efficacy. Nat Nanotechnol. 2019;14(8):799–809.

    Article 
    CAS 

    Google Scholar
     

  • Mady OY, Donia AA, Al-Shoubki AA, Qasim W. Paracellular pathway enhancement of metformin hydrochloride through molecular dispersion in span 60 microparticles. Entrance Pharmacol. 2019;10:713.

    Article 
    CAS 

    Google Scholar
     

  • Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Construction, operate, and regulation of the blood-brain barrier tight junction in central nervous system problems. Entrance Physiol. 2020;11:914.

    Article 

    Google Scholar
     

  • Solar Q, Leng J, Tang L, Wang L, Fu C. A complete evaluate of the chemistry, pharmacokinetics, pharmacology, medical purposes, opposed occasions, and high quality management of Indigo Naturalis. Entrance Pharmacol. 2021;12:664022.

    Article 
    CAS 

    Google Scholar
     

  • Lin YC, Shih CP, Chen HC, Chou YL, Sytwu HK, Fang MC, Wang CH. Ultrasound microbubble–facilitated internal ear supply of gold nanoparticles includes transient disruption of the tight junction barrier within the spherical window membrane. Entrance Pharmacol. 2021;12:689032.

    Article 
    CAS 

    Google Scholar
     

  • Subramanian, M. A. (2019). Toxicology: Rules and Strategies. MJP Writer.

  • Kim GB, Aragon-Sanabria V, Randolph L, Jiang H, Reynolds JA, Webb BS, Dong C. Excessive-affinity mutant Interleukin-13 focused CAR T cells improve supply of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioact Mater. 2020;5(3):624–35.

    Article 

    Google Scholar
     

  • Sanborn SL, Murugesan G, Marchant RE, Kottke-Marchant Ok. Endothelial cell formation of focal adhesions on hydrophilic plasma polymers. Biomaterials. 2002;23(1):1–8.

    Article 
    CAS 

    Google Scholar
     

  • Banks WA. Mind meets physique: the blood-brain barrier as an endocrine interface. Endocrinology. 2012;153(9):4111–9.

    Article 
    CAS 

    Google Scholar
     

  • Raj DS, Kesavan DK, Muthusamy N, Umamaheswari S. Efflux pumps potential drug targets to avoid drug Resistance-Multi drug efflux pumps of Helicobacter pylori. Supplies Right now: Proceedings. 2021;45:2976–81.

    CAS 

    Google Scholar
     

  • Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions within the blood–mind barrier. Tendencies Neurosci. 2001;24(12):719–25.

    Article 
    CAS 

    Google Scholar
     

  • Soudmand P, Tofighi A, Azar JT, Razi M, Pakdel FG. Totally different steady train coaching intensities induced impact on sertoli-germ cells metabolic interplay; implication on GLUT-1, GLUT-3 and MCT-4 transporting proteins expression stage. Gene. 2021;783:145553.

    Article 
    CAS 

    Google Scholar
     

  • Hawkins RA, Viña JR, Mokashi A, Peterson DR, O’Kane R, Simpson IA, Rasgado-Flores H. Synergism between the 2 membranes of the blood-brain barrier: Glucose and amino acid transport. Am J Neurosci Res. 2013;1(1):1–25.


    Google Scholar
     

  • Correia AC, Monteiro AR, Silva R, Moreira JN, Lobo JS, Silva AC. Lipid nanoparticles methods to change pharmacokinetics of central nervous system concentrating on medicine: crossing or circumventing the blood-brain barrier (BBB) to handle neurological problems. Adv Drug Deliv Rev. 2022. https://doi.org/10.1016/j.addr.2022.114485.

    Article 

    Google Scholar
     

  • Boveri M, Berezowski V, Value A, Slupek S, Lenfant AM, Benaud C, Dehouck MP. Induction of blood-brain barrier properties in cultured mind capillary endothelial cells: comparability between main glial cells and C6 cell line. Glia. 2005;51(3):187–98.

    Article 

    Google Scholar
     

  • Cox A, Andreozzi P, Dal Magro R, Fiordaliso F, Corbelli A, Talamini L, Chinello C, Raimondo F, Magni F, Tringali M , Krol S, Silva PJ, Stellacci F, Masserini M, Re F. Evolution of nanoparticle protein corona throughout the blood–mind barrier. ACS nano. 2018;12(7):7292–7300. https://doi.org/10.1021/acsnano.8b03500.

    Article 
    CAS 

    Google Scholar
     

  • Piddock LJ. Multidrug-resistance efflux pumps? not only for resistance. Nat Rev Microbiol. 2006;4(8):629–36.

    Article 
    CAS 

    Google Scholar
     

  • Lorke DE, Kalasz H, Petroianu GA, Tekes Ok. Entry of oximes into the mind: a evaluate. Curr Med Chem. 2008;15(8):743–53.

    Article 
    CAS 

    Google Scholar
     

  • Kuldo JM, Ogawara KI, Werner N, Ásgeirsdóttir SA, Kamps JA, Kok RJ, Molema G. Molecular pathways of endothelial cell activation for (focused) pharmacological intervention of continual inflammatory ailments. Curr Vasc Pharmacol. 2005;3(1):11–39.

    Article 
    CAS 

    Google Scholar
     

  • Eilenberger C, Rothbauer M, Selinger F, Gerhartl A, Jordan C, Harasek M, Ertl P. A microfluidic multisize spheroid array for multiparametric screening of anticancer medicine and blood–mind barrier transport properties. Adv Sci. 2021;8(11):2004856.

    Article 
    CAS 

    Google Scholar
     

  • Fernández L, Hancock RE. Adaptive and mutational resistance: function of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25(4):661–81.

    Article 

    Google Scholar
     

  • Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gendelman HE. Neurotheranostics as personalised medicines. Adv Drug Deliv Rev. 2019;148:252–89.

    Article 
    CAS 

    Google Scholar
     

  • Liu L, Chen Q, Wen L, Li C, Qin H, Xing D. Photoacoustic remedy for exact eradication of glioblastoma with a tumor web site blood–mind barrier permeability upregulating nanoparticle. Adv Func Mater. 2019;29(11):1808601.

    Article 

    Google Scholar
     

  • Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, Grabrucker AM. Novel Curcumin loaded nanoparticles engineered for Blood-Mind barrier crossing and in a position to disrupt Abeta aggregates. Int J Pharm. 2017;526(1–2):413–24.

    Article 
    CAS 

    Google Scholar
     

  • Hu Q, Gao X, Gu G, Kang T, Tu Y, Liu Z, Chen J. Glioma remedy utilizing tumor homing and penetrating peptide-functionalized PEG–PLA nanoparticles loaded with paclitaxel. Biomaterials. 2013;34(22):5640–50.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Jiang Y, Lv W, Wang Z, Lv L, Wang B, Gu Z. Twin focused nanocarrier for mind ischemic stroke therapy. J Management Launch. 2016;233:64–71.

    Article 
    CAS 

    Google Scholar
     

  • Thanh DTM, Trang PTT, Huong HT, Nam PT, Phuong NT, Trang NTT, Web optimization-Park J. Fabrication of poly (lactic acid)/hydroxyapatite (PLA/HAp) porous nanocomposite for bone regeneration. Int J Nanotechnol. 2015;12(5–7):391–404.

    Article 
    CAS 

    Google Scholar
     

  • Anand P, O’Neil A, Lin E, Douglas T, Holford M. Tailor-made supply of analgesic ziconotide throughout a blood mind barrier mannequin utilizing viral nanocontainers. Sci Rep. 2015;5(1):1–10.

    Article 

    Google Scholar
     

  • Kumari S, Ahsan SM, Kumar JM, Kondapi AK, Rao NM. Overcoming blood mind barrier with a twin function Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433). Sci Rep. 2017;7(1):1–13.

    Article 

    Google Scholar
     

  • Miao YB, Chen KH, Chen CT, Mi FL, Lin YJ, Chang Y, Sung HW. A noninvasive gut-to-brain oral drug supply system for treating mind tumors. Adv Mater. 2021;33(34):2100701.

    Article 
    CAS 

    Google Scholar
     

  • Elzoghby AO, Abd-Elwakil MM, Abd-Elsalam Ok, Elsayed TM, Hashem Y, Mohamed O. Pure polymeric nanoparticles for brain-targeting: implications on drug and gene supply. Present Pharm Des. 2016;22(22):3305–23.

    Article 
    CAS 

    Google Scholar
     

  • Bala I, Hariharan S, Kumar MR. PLGA nanoparticles in drug supply: the cutting-edge. Crit Rev Ther Drug Service Syst. 2004. https://doi.org/10.1615/critrevtherdrugcarriersyst.v21.i5.20.

    Article 

    Google Scholar
     

  • Bhowmik A, Chakravarti S, Ghosh A, Shaw R, Bhandary S, Bhattacharyya S, Ghosh MK. Anti-SSTR2 peptide based mostly focused supply of potent PLGA encapsulated 3, 3’-diindolylmethane nanoparticles by blood mind barrier prevents glioma development. Oncotarget. 2017;8(39):65339.

    Article 

    Google Scholar
     

  • Solar T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug supply in most cancers remedy. In: Voliani V, editor. Nanomaterials and Neoplasms. Dubai: Jenny Stanford Publishing; 2021.


    Google Scholar
     

  • Thananukul Ok, Kaewsaneha C, Opaprakasit P, Lebaz N, Errachid A, Elaissari A. Good gating porous particles as new carriers for drug supply. Adv Drug Deliv Rev. 2021;174:425–46.

    Article 
    CAS 

    Google Scholar
     

  • Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia Ok, Tekade RK. ‘Dendrimer-Cationized-Albumin’encrusted polymeric nanoparticle improves BBB penetration and anticancer exercise of doxorubicin. Int J Pharm. 2019;555:77–99.

    Article 
    CAS 

    Google Scholar
     

  • Florendo M, Figacz A, Srinageshwar B, Sharma A, Swanson D, Dunbar GL, Rossignol J. Use of polyamidoamine dendrimers in mind ailments. Molecules. 2018;23(9):2238.

    Article 

    Google Scholar
     

  • Liu Y, Alahiri M, Ulloa B, Xie B, Sadiq SA. Adenosine A2A receptor agonist ameliorates EAE and correlates with Th1 cytokine-induced blood mind barrier dysfunction through suppression of MLCK signaling pathway. Immunity, Irritation and Illness. 2018;6(1):72–80.

    Article 
    CAS 

    Google Scholar
     

  • Ding S, Khan AI, Cai X, Tune Y, Lyu Z, Du D, Lin Y. Overcoming blood–mind barrier transport: Advances in nanoparticle-based drug supply methods. Mater Right now. 2020;37:112–25.

    Article 
    CAS 

    Google Scholar
     

  • Hong CS, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, Boyiadzis M. Circulating exosomes carrying an immunosuppressive cargo intrude with mobile immunotherapy in acute myeloid leukemia. Sci Rep. 2017;7(1):1–10.

    Article 

    Google Scholar
     

  • Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Peng Q. The protein corona and its results on nanoparticle-based drug supply programs. Acta Biomater. 2021;129:57–72.

    Article 
    CAS 

    Google Scholar
     

  • Lee M, Li W, Siu RK, Whang J, Zhang X, Soo C, Wu BM. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials. 2009;30(30):6094–101.

    Article 
    CAS 

    Google Scholar
     

  • Caprifico AE, Foot PJ, Polycarpou E, Calabrese G. Overcoming the blood-brain barrier: Functionalised chitosan nanocarriers. Pharmaceutics. 2020;12(11):1013.

    Article 
    CAS 

    Google Scholar
     

  • Chipaux M, van der Laan KJ, Hemelaar SR, Hasani M, Zheng T, Schirhagl R. Nanodiamonds and their purposes in cells. Small. 2018;14(24):1704263.

    Article 

    Google Scholar
     

  • Bitounis D, Fanciullino R, Iliadis A, Ciccolini J. Optimizing druggability by liposomal formulations: new approaches to an previous idea. ISRN. 2012. https://doi.org/10.5402/2012/738432.

    Article 

    Google Scholar
     

  • Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca F, Vugts DJ, van Tellingen O. Pharmacokinetics, mind supply, and efficacy in mind tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3–101). PLoS ONE. 2014;9(1):e82331.

    Article 

    Google Scholar
     

  • Wadajkar AS, Dancy JG, Hersh DS, Anastasiadis P, Tran NL, Woodworth GF, Kim AJ. Tumor-targeted nanotherapeutics: overcoming therapy limitations for glioblastoma. Wiley Interdisciplinary Rev Nanomed Nanobiotechnol. 2017;9(4):e1439.

    Article 

    Google Scholar
     

  • Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug supply throughout the blood–mind barrier: latest advances in the usage of nanocarriers. Nanomedicine. 2020;15(2):205–14.

    Article 
    CAS 

    Google Scholar
     

  • Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. Ligand modified nanoparticles will increase cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3(1):1–9.

    Article 

    Google Scholar
     

  • Wu S, Fu J, Liu D, Chen D, Hu H. The Blood-Mind Barrier Cell-Focused Gene Supply System to Improve Nerve Progress Issue Protein Secretion within the Mind. ACS Biomater Sci Eng. 2020;6(11):6207–16.

    Article 
    CAS 

    Google Scholar
     

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discovery. 2021;20(2):101–24.

    Article 
    CAS 

    Google Scholar
     

  • Wei J, Wang Y, Jiang J, Yan Y, Fan D, Yang X, Li J. Improvement of an antibacterial bone graft by immobilization of levofloxacin hydrochloride-loaded mesoporous silica microspheres on a porous scaffold floor. J Biomed Nanotechnol. 2019;15(5):1097–105.

    Article 
    CAS 

    Google Scholar
     

  • Kuang J, Tune W, Yin J, Zeng X, Han S, Zhao YP, Zhang XZ. iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy in opposition to glioblastoma. Adv Purposeful Mater. 2018;28(17):1800025.

    Article 

    Google Scholar
     

  • Yin T, Xie W, Solar J, Yang L, Liu J. Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal therapy of Alzheimer’s illness utilizing ultralow irradiance. ACS Appl Mater Interfaces. 2016;8(30):19291–302.

    Article 
    CAS 

    Google Scholar
     

  • Chen IC, Hsiao IL, Lin HC, Wu CH, Chuang CY, Huang YJ. Affect of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Environ Toxicol Pharmacol. 2016;47:108–18.

    Article 
    CAS 

    Google Scholar
     

  • Rivera-Gil P, De Jimenez Aberasturi D, Wulf V, Pelaz B, Del Pino P, Zhao Y, Parak WJ. The problem to narrate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res. 2013;46(3):743–9.

    Article 
    CAS 

    Google Scholar
     

  • Norek M, Pereira GA, Geraldes CF, Denkova A, Zhou W, Peters JA. NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles. The Journal of Bodily Chemistry C. 2007;111(28):10240–6.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Y, Morshed RA, Auffinger B, Tobias AL, Lesniak MS. Multifunctional nanoparticles for mind tumor imaging and remedy. Adv Drug Deliv Rev. 2014;66:42–57.

    Article 
    CAS 

    Google Scholar
     

  • Raman S, Mahmood S, Hilles AR, Javed MN, Azmana M, Al-Japairai KA. Polymeric nanoparticles for mind drug delivery-a evaluate. Curr Drug Metab. 2020;21(9):649–60.

    Article 
    CAS 

    Google Scholar
     

  • Moosavi MA, Sharifi M, Ghafary SM, Mohammadalipour Z, Khataee A, Rahmati M, Ghavami S. Photodynamic N-TiO2 nanoparticle therapy induces managed ROS-mediated autophagy and terminal differentiation of leukemia cells. Sci Rep. 2016;6(1):1–16.

    Article 

    Google Scholar
     

  • Choy JH, Choi SJ, Oh JM. Mobile uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy resulting from clathrin-mediated endocytosis. Bioconjugate Chem. 2006;17(6):1411–7. https://doi.org/10.1021/bc0601323.

    Article 
    CAS 

    Google Scholar
     

  • Prokop A, Davidson JM. Nanovehicular intracellular supply programs. J Pharm Sci. 2008;97(9):3518–90.

    Article 
    CAS 

    Google Scholar
     

  • Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Impact of the floor modification, dimension, and form on mobile uptake of nanoparticles. Cell Biol Int. 2015;39(8):881–90.

    Article 
    CAS 

    Google Scholar
     

  • Khine YY, Stenzel MH. Floor modified cellulose nanomaterials: a supply of non-spherical nanoparticles for drug supply. Mater Horiz. 2020;7(7):1727–58.

    Article 
    CAS 

    Google Scholar
     

  • Pitirollo O, Micoli F, Necchi F, Mancini F, Carducci M, Adamo R, Lay L. Gold nanoparticles morphology doesn’t have an effect on the multivalent presentation and antibody recognition of Group A Streptococcus artificial oligorhamnans. Bioorg Chem. 2020;99:103815.

    Article 
    CAS 

    Google Scholar
     

  • Gonzalez-Carter DA, Ong ZY, McGilvery CM, Dunlop IE, Dexter DT, Porter AE. L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles. Nanomedicine. 2019;15(1):1–11.

    Article 
    CAS 

    Google Scholar
     

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Elements affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.

    Article 
    CAS 

    Google Scholar
     

  • Zhang B, Solar X, Mei H, Wang Y, Liao Z, Chen J, Jiang X. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting remedy of mind glioma. Biomaterials. 2013;34(36):9171–82.

    Article 
    CAS 

    Google Scholar
     

  • Brunacci N, Neffe AT, Wischke C, Naolou T, Nöchel U, Lendlein A. Oligodepsipeptide (nano) carriers: Computational design and evaluation of enhanced drug loading. J Management Launch. 2019;301:146–56.

    Article 
    CAS 

    Google Scholar
     

  • Jackson AW, Fulton DA. Making polymeric nanoparticles stimuli-responsive with dynamic covalent bonds. Polym Chem. 2013;4(1):31–45.

    Article 
    CAS 

    Google Scholar
     

  • Tan C, Arshadi M, Lee MC, Godec M, Azizi M, Yan B, Abbaspourrad A. A sturdy aqueous core–shell–shell coconut-like nanostructure for stimuli-responsive supply of hydrophilic cargo. ACS Nano. 2019;13(8):9016–27.

    Article 
    CAS 

    Google Scholar
     

  • Zhang W, Zhang Z, Zhang Y. The applying of carbon nanotubes in goal drug supply programs for most cancers therapies. Nanoscale Res Lett. 2011;6(1):1–22.

    Article 

    Google Scholar
     

  • Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Polymeric vesicles: from drug carriers to nanoreactors and synthetic organelles. Acc Chem Res. 2011;44(10):1039–49.

    Article 
    CAS 

    Google Scholar
     

  • Tang L, Zhao CY, Wang XH, Li RS, Yang JR, Huang YP, Liu ZS. Macromolecular crowding of molecular imprinting: a facile pathway to supply drug supply gadgets for zero-order sustained launch. Int J Pharm. 2015;496(2):822–33.

    Article 
    CAS 

    Google Scholar
     

  • Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug supply. In: Grobmyer SR, Moudgil BM, editors. Most cancers Nanotechnology. Totowa: Humana Press; 2010. p. 163–75.

    Chapter 

    Google Scholar
     

  • Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, Lynch I. Environmental dimensions of the protein corona. Nat Nanotechnol. 2021;16(6):617–29.

    Article 
    CAS 

    Google Scholar
     

  • Shubar HM, Dunay IR, Lachenmaier S, Dathe M, Bushrab FN, Mauludin R, Liesenfeld O. The function of apolipoprotein E in uptake of atovaquone into the mind in murine acute and reactivated toxoplasmosis. J Drug Goal. 2009;17(4):257–67.

    Article 
    CAS 

    Google Scholar
     

  • Cai R, Chen C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv Mater. 2019;31(45):1805740.

    Article 
    CAS 

    Google Scholar
     

  • Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kreyling WG. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31(25):6574–81.

    Article 
    CAS 

    Google Scholar
     

  • Šamec N, Zottel A, Videtič Paska A, Jovčevska I. Nanomedicine and immunotherapy: a step additional in direction of precision drugs for glioblastoma. Molecules. 2020;25(3):490.

    Article 

    Google Scholar
     

  • Liu L, Xu Ok, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Yang YY. Self-assembled cationic peptide nanoparticles as an environment friendly antimicrobial agent. Nature Nanotechnol. 2009;4(7):457–63.

    Article 
    CAS 

    Google Scholar
     

  • Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of lively concentrating on in strong tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci. 2010;107(3):1235–40.

    Article 
    CAS 

    Google Scholar
     

  • Johnsen KB, Bak M, Melander F, Thomsen MS, Burkhart A, Kempen PJ, Moos T. Modulating the antibody density modifications the uptake and transport on the blood-brain barrier of each transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Management Launch. 2019;295:237–49.

    Article 
    CAS 

    Google Scholar
     

  • Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, Qian Y. Twin-functional nanoparticles concentrating on amyloid plaques within the brains of Alzheimer’s illness mice. Biomaterials. 2014;35(1):456–65.

    Article 
    CAS 

    Google Scholar
     

  • Belhadj Z, Ying M, Cao X, Hu X, Zhan C, Wei X, Lu W. Design of Y-shaped concentrating on materials for liposome-based multifunctional glioblastoma-targeted drug supply. J Management Launch. 2017;255:132–41.

    Article 
    CAS 

    Google Scholar
     

  • Zhang J, Hu Ok, Di L, Wang P, Liu Z, Zhang J, Qiao H. Conventional natural drugs and nanomedicine: Converging disciplines to enhance therapeutic efficacy and human well being. Adv Drug Deliv Rev. 2021;178:113964.

    Article 
    CAS 

    Google Scholar
     

  • Miao YB, Ren HX, Zhong Q, Tune FX. Tailoring a luminescent metallic− natural framework exact inclusion of Pt-Aptamer nanoparticle for noninvasive monitoring Parkinson’s illness. Chem Eng J. 2022;441: 136009.

    Article 
    CAS 

    Google Scholar
     

  • Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative evaluation of drug supply to the mind through nasal route. J Management Launch. 2014;189:133–40.

    Article 
    CAS 

    Google Scholar
     

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wooden MJ. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29(4):341–5.

    Article 
    CAS 

    Google Scholar
     

  • Nagata T, Dwyer CA, Yoshida-Tanaka Ok, Ihara Ok, Ohyagi M, Kaburagi H, Yokota T. Ldl cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–mind barrier and knock down genes within the rodent CNS. Nat Biotechnol. 2021;39(12):1529–36.

    Article 
    CAS 

    Google Scholar
     

  • Rip J. Liposome applied sciences and drug supply to the CNS. Drug Discov Right now Technol. 2016;20:53–8.

    Article 

    Google Scholar
     

  • Gernert M, Feja M. Bypassing the Blood-Mind Barrier: Direct Intracranial Drug Supply in Epilepsies. Pharmaceutics. 2020;12(12):1134.

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments