Zhu D, Li Y, Zhang Z, Xue Z, Hua Z, Luo X, Liu Y. Latest advances of nanotechnology-based tumor vessel-targeting methods. J Nanobiotechnol. 2021;19(1):1–17.
Dellacherie MO, Web optimization BR, Mooney DJ. Macroscale biomaterials methods for native immunomodulation. Nat Rev Mater. 2019;4(6):379–97.
Zhang X, Chen J, Wang W, Li X, Tan Y, Zhang X, Qian W. Therapy of central nervous system relapse in acute promyelocytic leukemia by venetoclax: a case report. Entrance Oncol. 2021. https://doi.org/10.3389/fonc.2021.693670.
Cao HY, Tao T, Shen XD, Bai L, Wan CL, Wu DP, Xue SL. Effectivity of anti-VEGF remedy in central nervous system AML relapse: a case report and literature evaluate. Clin Case Rep. 2022;10(2):e05367.
Huang CW, Chuang CP, Chen YJ, Wang HY, Lin JJ, Huang CY, Huang FT. Integrin α2β1-targeting ferritin nanocarrier traverses the blood–mind barrier for efficient glioma chemotherapy. J Nanobiotechnol. 2021;19(1):1–17.
Ho JS, Zhang Y. Wi-fi nanomedicine for mind tumors. Nat Nanotechnol. 2022;17(9):907–8.
Vanner RJ, Dobson SM, Gan OI, McLeod J, Schoof EM, Grandal I, Dick JE. Multiomic profiling of central nervous system leukemia identifies mRNA translation as a therapeutic targetblocking translation to focus on B-ALL CNS illness. Blood Most cancers Discov. 2022;3(1):16–31.
Zhang S, Zhang S, Luo S, Tang P, Wan M, Wu D, Gao W. Ultrasound-assisted mind supply of nanomedicines for mind tumor remedy: advance and prospect. J Nanobiotechnol. 2022;20(1):1–27.
Zhang Y, Yang WX. Tight junction between endothelial cells: the interplay between nanoparticles and blood vessels. Beilstein J Nanotechnol. 2016;7(1):675–84.
Jia X, Yuan Z, Yang Y, Huang X, Han N, Liu X, Lei H. Multi-functional self-assembly nanoparticles originating from small molecule pure product for oral insulin supply by modulating tight junctions. J Nanobiotechnol. 2022;20(1):1–17.
Liu B, Yan W, Luo L, Wu S, Wang Y, Zhong Y, Wang G. Macrophage membrane camouflaged reactive oxygen species responsive nanomedicine for effectively inhibiting the vascular intimal hyperplasia. J Nanobiotechnol. 2021;19(1):1–19.
Mitusova Ok, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood–mind barrier for the remedy of malignant mind tumor: present standing and prospects of drug supply approaches. J Nanobiotechnol. 2022;20(1):1–40.
Shilo M, Sharon A, Baranes Ok, Motiei M, Lellouche JPM, Popovtzer R. The impact of nanoparticle dimension on the likelihood to cross the blood-brain barrier: an in-vitro endothelial cell mannequin. J Nanobiotechnol. 2015;13(1):1–7.
Wolak DJ, Thorne RG. Diffusion of macromolecules within the mind: implications for drug supply. Mol Pharm. 2013;10(5):1492–504.
Wang T, Zhang H, Qiu W, Han Y, Liu H, Li Z. Biomimetic nanoparticles immediately transform immunosuppressive microenvironment for reinforcing glioblastoma immunotherapy. Bioactive supplies. 2022;16:418–32.
Yang M, Li J, Gu P, Fan X. The applying of nanoparticles in most cancers immunotherapy: concentrating on tumor microenvironment. Bioactive supplies. 2021;6(7):1973–87.
Aur RJ, Simone J, Hustu HO, Walters T, Borella L, Pratt C, Pinkel D. Central nervous system remedy and mixture chemotherapy of childhood lymphocytic leukemia. Blood. 1971;37(3):272–81.
Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Mixture of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system problems: a evaluate. J Nanobiotechnol. 2021;19(1):1–22.
Zhou F, Wen Y, Jin R, Chen H. New makes an attempt for central nervous infiltration of pediatric acute lymphoblastic leukemia. Most cancers Metastasis Rev. 2019;38(4):657–71.
Yao H, Value TT, Cantelli G, Ngo B, Warner MJ, Olivere L, Sipkins DA. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560(7716):55–60.
Elbahlawan L, Galdo AM, Ribeiro RC. Pulmonary manifestations of hematologic and oncologic ailments in youngsters. Pediatr Clin. 2021;68(1):61–80.
Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Invoice RM. Concentrating on aquaporin-4 subcellular localization to deal with central nervous system edema. Cell. 2020;181(4):784–99.
Wang J, Rong Y, Ji C, Lv C, Jiang D, Ge X, Fan J. MicroRNA-421–3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor operate restoration through inhibition of mTOR in spinal wire damage. J Nanobiotechnol. 2020;18(1):1–17.
Stewart DJ, Keating MJ, McCredie KB, Smith TL, Youness E, Murphy SG, Freireich EJ. Pure historical past of central nervous system acute leukemia in adults. Most cancers. 1981;47(1):184–96.
Tian X, Fan T, Zhao W, Abbas G, Han B, Zhang Ok, Xie Z. Latest advances within the growth of nanomedicines for the therapy of ischemic stroke. Bioact Mater. 2021;6(9):2854–69.
Web optimization Y, Bang S, Son J, Kim D, Jeong Y, Kim P, Kim HN. Mind physiome: an idea bridging in vitro 3D mind fashions and in silico fashions for predicting drug toxicity within the mind. Bioact Mater. 2021. https://doi.org/10.1016/j.bioactmat.2021.11.009.
Xu G, Mahajan S, Roy I, Yong KT. Theranostic quantum dots for crossing blood–mind barrier in vitro and offering remedy of HIV-associated encephalopathy. Entrance Pharmacol. 2013;4:140.
Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Dwelling on the sting of the CNS: meninges cell range in well being and illness. Entrance Cell Neurosci. 2021;15:703944.
Da Mesquita S, Fu Z, Kipnis J. The meningeal lymphatic system: a brand new participant in neurophysiology. Neuron. 2018;100(2):375–88.
Zhao P, Le Z, Liu L, Chen Y. Therapeutic supply to the mind through the lymphatic vasculature. Nano Lett. 2020;20(7):5415–20.
Value RA, Johnson WW. The central nervous system in childhood leukemia: I. Most cancers. 1973;31(3):520–33.
Ma Z, Zhao X, Huang J, Jia X, Deng M, Cui D, Xiao C. A crucial function of periostin in B-cell acute lymphoblastic leukemia. Leukemia. 2017;31(8):1835–7.
Erdener ŞE, Tang J, Kılıç Ok, Postnov D, Giblin JT, Kura S, Boas DA. Dynamic capillary stalls in reperfused ischemic penumbra contribute to damage: a hyperacute function for neutrophils in persistent visitors jams. J Cereb Blood Circulation Metab. 2021;41(2):236–52.
Frishman-Levy L, Izraeli S. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for remedy. Br J Haematol. 2017;176(2):157–67.
Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JR, Qiao Z, Potash JB. Genome-wide affiliation research of greater than 40,000 bipolar dysfunction instances offers new insights into the underlying biology. Nat Genet. 2021;53(6):817–29.
Engelhardt B, Ransohoff RM. Seize, crawl, cross: the T cell code to breach the blood–mind limitations. Tendencies Immunol. 2012;33(12):579–89.
Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood mind barrier integrity. Nat Commun. 2014;5(1):1–12.
Gétaz EP, Miller GJ. Spinal wire involvement in continual lymphocytic leukemia. Most cancers. 1979;43(5):1858–61.
Tavares GA, Louveau A. Meningeal lymphatics: an immune gateway for the central nervous system. Cells. 2021;10(12):3385.
Yuan J, Li Y, Liu X, Nie M, Jiang W, Fan Y, Jiang R. Atorvastatin plus low-dose dexamethasone could also be efficient for leukemia-related continual subdural hematoma however not for leukemia encephalopathy: a report of three instances. Entrance Oncol. 2021;11:628927.
Olivier JC. Drug transport to mind with focused nanoparticles. NeuroRx. 2005;2(1):108–19.
Parvez S, Kaushik M, Ali M, Alam MM, Ali J, Tabassum H, Kaushik P. Dodging blood mind barrier with “nano” warriors: Novel technique in opposition to ischemic stroke. Theranostics. 2022;12(2):689.
Kreyling WG, Fertsch-Gapp S, Schäffler M, Johnston BD, Haberl N, Pfeiffer C, Parak WJ. In vitro and in vivo interactions of chosen nanoparticles with rodent serum proteins and their penalties in biokinetics. Beilstein J Nanotechnol. 2014;5(1):1699–711.
Zhou Q, Shao S, Wang J, Xu C, Xiang J, Piao Y, Shen Y. Enzyme-activatable polymer–drug conjugate augments tumour penetration and therapy efficacy. Nat Nanotechnol. 2019;14(8):799–809.
Mady OY, Donia AA, Al-Shoubki AA, Qasim W. Paracellular pathway enhancement of metformin hydrochloride through molecular dispersion in span 60 microparticles. Entrance Pharmacol. 2019;10:713.
Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Construction, operate, and regulation of the blood-brain barrier tight junction in central nervous system problems. Entrance Physiol. 2020;11:914.
Solar Q, Leng J, Tang L, Wang L, Fu C. A complete evaluate of the chemistry, pharmacokinetics, pharmacology, medical purposes, opposed occasions, and high quality management of Indigo Naturalis. Entrance Pharmacol. 2021;12:664022.
Lin YC, Shih CP, Chen HC, Chou YL, Sytwu HK, Fang MC, Wang CH. Ultrasound microbubble–facilitated internal ear supply of gold nanoparticles includes transient disruption of the tight junction barrier within the spherical window membrane. Entrance Pharmacol. 2021;12:689032.
Subramanian, M. A. (2019). Toxicology: Rules and Strategies. MJP Writer.
Kim GB, Aragon-Sanabria V, Randolph L, Jiang H, Reynolds JA, Webb BS, Dong C. Excessive-affinity mutant Interleukin-13 focused CAR T cells improve supply of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioact Mater. 2020;5(3):624–35.
Sanborn SL, Murugesan G, Marchant RE, Kottke-Marchant Ok. Endothelial cell formation of focal adhesions on hydrophilic plasma polymers. Biomaterials. 2002;23(1):1–8.
Banks WA. Mind meets physique: the blood-brain barrier as an endocrine interface. Endocrinology. 2012;153(9):4111–9.
Raj DS, Kesavan DK, Muthusamy N, Umamaheswari S. Efflux pumps potential drug targets to avoid drug Resistance-Multi drug efflux pumps of Helicobacter pylori. Supplies Right now: Proceedings. 2021;45:2976–81.
Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions within the blood–mind barrier. Tendencies Neurosci. 2001;24(12):719–25.
Soudmand P, Tofighi A, Azar JT, Razi M, Pakdel FG. Totally different steady train coaching intensities induced impact on sertoli-germ cells metabolic interplay; implication on GLUT-1, GLUT-3 and MCT-4 transporting proteins expression stage. Gene. 2021;783:145553.
Hawkins RA, Viña JR, Mokashi A, Peterson DR, O’Kane R, Simpson IA, Rasgado-Flores H. Synergism between the 2 membranes of the blood-brain barrier: Glucose and amino acid transport. Am J Neurosci Res. 2013;1(1):1–25.
Correia AC, Monteiro AR, Silva R, Moreira JN, Lobo JS, Silva AC. Lipid nanoparticles methods to change pharmacokinetics of central nervous system concentrating on medicine: crossing or circumventing the blood-brain barrier (BBB) to handle neurological problems. Adv Drug Deliv Rev. 2022. https://doi.org/10.1016/j.addr.2022.114485.
Boveri M, Berezowski V, Value A, Slupek S, Lenfant AM, Benaud C, Dehouck MP. Induction of blood-brain barrier properties in cultured mind capillary endothelial cells: comparability between main glial cells and C6 cell line. Glia. 2005;51(3):187–98.
Cox A, Andreozzi P, Dal Magro R, Fiordaliso F, Corbelli A, Talamini L, Chinello C, Raimondo F, Magni F, Tringali M , Krol S, Silva PJ, Stellacci F, Masserini M, Re F. Evolution of nanoparticle protein corona throughout the blood–mind barrier. ACS nano. 2018;12(7):7292–7300. https://doi.org/10.1021/acsnano.8b03500.
Piddock LJ. Multidrug-resistance efflux pumps? not only for resistance. Nat Rev Microbiol. 2006;4(8):629–36.
Lorke DE, Kalasz H, Petroianu GA, Tekes Ok. Entry of oximes into the mind: a evaluate. Curr Med Chem. 2008;15(8):743–53.
Kuldo JM, Ogawara KI, Werner N, Ásgeirsdóttir SA, Kamps JA, Kok RJ, Molema G. Molecular pathways of endothelial cell activation for (focused) pharmacological intervention of continual inflammatory ailments. Curr Vasc Pharmacol. 2005;3(1):11–39.
Eilenberger C, Rothbauer M, Selinger F, Gerhartl A, Jordan C, Harasek M, Ertl P. A microfluidic multisize spheroid array for multiparametric screening of anticancer medicine and blood–mind barrier transport properties. Adv Sci. 2021;8(11):2004856.
Fernández L, Hancock RE. Adaptive and mutational resistance: function of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25(4):661–81.
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gendelman HE. Neurotheranostics as personalised medicines. Adv Drug Deliv Rev. 2019;148:252–89.
Liu L, Chen Q, Wen L, Li C, Qin H, Xing D. Photoacoustic remedy for exact eradication of glioblastoma with a tumor web site blood–mind barrier permeability upregulating nanoparticle. Adv Func Mater. 2019;29(11):1808601.
Barbara R, Belletti D, Pederzoli F, Masoni M, Keller J, Ballestrazzi A, Grabrucker AM. Novel Curcumin loaded nanoparticles engineered for Blood-Mind barrier crossing and in a position to disrupt Abeta aggregates. Int J Pharm. 2017;526(1–2):413–24.
Hu Q, Gao X, Gu G, Kang T, Tu Y, Liu Z, Chen J. Glioma remedy utilizing tumor homing and penetrating peptide-functionalized PEG–PLA nanoparticles loaded with paclitaxel. Biomaterials. 2013;34(22):5640–50.
Zhao Y, Jiang Y, Lv W, Wang Z, Lv L, Wang B, Gu Z. Twin focused nanocarrier for mind ischemic stroke therapy. J Management Launch. 2016;233:64–71.
Thanh DTM, Trang PTT, Huong HT, Nam PT, Phuong NT, Trang NTT, Web optimization-Park J. Fabrication of poly (lactic acid)/hydroxyapatite (PLA/HAp) porous nanocomposite for bone regeneration. Int J Nanotechnol. 2015;12(5–7):391–404.
Anand P, O’Neil A, Lin E, Douglas T, Holford M. Tailor-made supply of analgesic ziconotide throughout a blood mind barrier mannequin utilizing viral nanocontainers. Sci Rep. 2015;5(1):1–10.
Kumari S, Ahsan SM, Kumar JM, Kondapi AK, Rao NM. Overcoming blood mind barrier with a twin function Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433). Sci Rep. 2017;7(1):1–13.
Miao YB, Chen KH, Chen CT, Mi FL, Lin YJ, Chang Y, Sung HW. A noninvasive gut-to-brain oral drug supply system for treating mind tumors. Adv Mater. 2021;33(34):2100701.
Elzoghby AO, Abd-Elwakil MM, Abd-Elsalam Ok, Elsayed TM, Hashem Y, Mohamed O. Pure polymeric nanoparticles for brain-targeting: implications on drug and gene supply. Present Pharm Des. 2016;22(22):3305–23.
Bala I, Hariharan S, Kumar MR. PLGA nanoparticles in drug supply: the cutting-edge. Crit Rev Ther Drug Service Syst. 2004. https://doi.org/10.1615/critrevtherdrugcarriersyst.v21.i5.20.
Bhowmik A, Chakravarti S, Ghosh A, Shaw R, Bhandary S, Bhattacharyya S, Ghosh MK. Anti-SSTR2 peptide based mostly focused supply of potent PLGA encapsulated 3, 3’-diindolylmethane nanoparticles by blood mind barrier prevents glioma development. Oncotarget. 2017;8(39):65339.
Solar T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug supply in most cancers remedy. In: Voliani V, editor. Nanomaterials and Neoplasms. Dubai: Jenny Stanford Publishing; 2021.
Thananukul Ok, Kaewsaneha C, Opaprakasit P, Lebaz N, Errachid A, Elaissari A. Good gating porous particles as new carriers for drug supply. Adv Drug Deliv Rev. 2021;174:425–46.
Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia Ok, Tekade RK. ‘Dendrimer-Cationized-Albumin’encrusted polymeric nanoparticle improves BBB penetration and anticancer exercise of doxorubicin. Int J Pharm. 2019;555:77–99.
Florendo M, Figacz A, Srinageshwar B, Sharma A, Swanson D, Dunbar GL, Rossignol J. Use of polyamidoamine dendrimers in mind ailments. Molecules. 2018;23(9):2238.
Liu Y, Alahiri M, Ulloa B, Xie B, Sadiq SA. Adenosine A2A receptor agonist ameliorates EAE and correlates with Th1 cytokine-induced blood mind barrier dysfunction through suppression of MLCK signaling pathway. Immunity, Irritation and Illness. 2018;6(1):72–80.
Ding S, Khan AI, Cai X, Tune Y, Lyu Z, Du D, Lin Y. Overcoming blood–mind barrier transport: Advances in nanoparticle-based drug supply methods. Mater Right now. 2020;37:112–25.
Hong CS, Sharma P, Yerneni SS, Simms P, Jackson EK, Whiteside TL, Boyiadzis M. Circulating exosomes carrying an immunosuppressive cargo intrude with mobile immunotherapy in acute myeloid leukemia. Sci Rep. 2017;7(1):1–10.
Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Peng Q. The protein corona and its results on nanoparticle-based drug supply programs. Acta Biomater. 2021;129:57–72.
Lee M, Li W, Siu RK, Whang J, Zhang X, Soo C, Wu BM. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials. 2009;30(30):6094–101.
Caprifico AE, Foot PJ, Polycarpou E, Calabrese G. Overcoming the blood-brain barrier: Functionalised chitosan nanocarriers. Pharmaceutics. 2020;12(11):1013.
Chipaux M, van der Laan KJ, Hemelaar SR, Hasani M, Zheng T, Schirhagl R. Nanodiamonds and their purposes in cells. Small. 2018;14(24):1704263.
Bitounis D, Fanciullino R, Iliadis A, Ciccolini J. Optimizing druggability by liposomal formulations: new approaches to an previous idea. ISRN. 2012. https://doi.org/10.5402/2012/738432.
Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca F, Vugts DJ, van Tellingen O. Pharmacokinetics, mind supply, and efficacy in mind tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3–101). PLoS ONE. 2014;9(1):e82331.
Wadajkar AS, Dancy JG, Hersh DS, Anastasiadis P, Tran NL, Woodworth GF, Kim AJ. Tumor-targeted nanotherapeutics: overcoming therapy limitations for glioblastoma. Wiley Interdisciplinary Rev Nanomed Nanobiotechnol. 2017;9(4):e1439.
Mulvihill JJ, Cunnane EM, Ross AM, Duskey JT, Tosi G, Grabrucker AM. Drug supply throughout the blood–mind barrier: latest advances in the usage of nanocarriers. Nanomedicine. 2020;15(2):205–14.
Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. Ligand modified nanoparticles will increase cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3(1):1–9.
Wu S, Fu J, Liu D, Chen D, Hu H. The Blood-Mind Barrier Cell-Focused Gene Supply System to Improve Nerve Progress Issue Protein Secretion within the Mind. ACS Biomater Sci Eng. 2020;6(11):6207–16.
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug supply. Nat Rev Drug Discovery. 2021;20(2):101–24.
Wei J, Wang Y, Jiang J, Yan Y, Fan D, Yang X, Li J. Improvement of an antibacterial bone graft by immobilization of levofloxacin hydrochloride-loaded mesoporous silica microspheres on a porous scaffold floor. J Biomed Nanotechnol. 2019;15(5):1097–105.
Kuang J, Tune W, Yin J, Zeng X, Han S, Zhao YP, Zhang XZ. iRGD modified chemo-immunotherapeutic nanoparticles for enhanced immunotherapy in opposition to glioblastoma. Adv Purposeful Mater. 2018;28(17):1800025.
Yin T, Xie W, Solar J, Yang L, Liu J. Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and NIR photothermal therapy of Alzheimer’s illness utilizing ultralow irradiance. ACS Appl Mater Interfaces. 2016;8(30):19291–302.
Chen IC, Hsiao IL, Lin HC, Wu CH, Chuang CY, Huang YJ. Affect of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability. Environ Toxicol Pharmacol. 2016;47:108–18.
Rivera-Gil P, De Jimenez Aberasturi D, Wulf V, Pelaz B, Del Pino P, Zhao Y, Parak WJ. The problem to narrate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res. 2013;46(3):743–9.
Norek M, Pereira GA, Geraldes CF, Denkova A, Zhou W, Peters JA. NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles. The Journal of Bodily Chemistry C. 2007;111(28):10240–6.
Cheng Y, Morshed RA, Auffinger B, Tobias AL, Lesniak MS. Multifunctional nanoparticles for mind tumor imaging and remedy. Adv Drug Deliv Rev. 2014;66:42–57.
Raman S, Mahmood S, Hilles AR, Javed MN, Azmana M, Al-Japairai KA. Polymeric nanoparticles for mind drug delivery-a evaluate. Curr Drug Metab. 2020;21(9):649–60.
Moosavi MA, Sharifi M, Ghafary SM, Mohammadalipour Z, Khataee A, Rahmati M, Ghavami S. Photodynamic N-TiO2 nanoparticle therapy induces managed ROS-mediated autophagy and terminal differentiation of leukemia cells. Sci Rep. 2016;6(1):1–16.
Choy JH, Choi SJ, Oh JM. Mobile uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy resulting from clathrin-mediated endocytosis. Bioconjugate Chem. 2006;17(6):1411–7. https://doi.org/10.1021/bc0601323.
Prokop A, Davidson JM. Nanovehicular intracellular supply programs. J Pharm Sci. 2008;97(9):3518–90.
Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Impact of the floor modification, dimension, and form on mobile uptake of nanoparticles. Cell Biol Int. 2015;39(8):881–90.
Khine YY, Stenzel MH. Floor modified cellulose nanomaterials: a supply of non-spherical nanoparticles for drug supply. Mater Horiz. 2020;7(7):1727–58.
Pitirollo O, Micoli F, Necchi F, Mancini F, Carducci M, Adamo R, Lay L. Gold nanoparticles morphology doesn’t have an effect on the multivalent presentation and antibody recognition of Group A Streptococcus artificial oligorhamnans. Bioorg Chem. 2020;99:103815.
Gonzalez-Carter DA, Ong ZY, McGilvery CM, Dunlop IE, Dexter DT, Porter AE. L-DOPA functionalized, multi-branched gold nanoparticles as brain-targeted nano-vehicles. Nanomedicine. 2019;15(1):1–11.
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Elements affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505–15.
Zhang B, Solar X, Mei H, Wang Y, Liao Z, Chen J, Jiang X. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting remedy of mind glioma. Biomaterials. 2013;34(36):9171–82.
Brunacci N, Neffe AT, Wischke C, Naolou T, Nöchel U, Lendlein A. Oligodepsipeptide (nano) carriers: Computational design and evaluation of enhanced drug loading. J Management Launch. 2019;301:146–56.
Jackson AW, Fulton DA. Making polymeric nanoparticles stimuli-responsive with dynamic covalent bonds. Polym Chem. 2013;4(1):31–45.
Tan C, Arshadi M, Lee MC, Godec M, Azizi M, Yan B, Abbaspourrad A. A sturdy aqueous core–shell–shell coconut-like nanostructure for stimuli-responsive supply of hydrophilic cargo. ACS Nano. 2019;13(8):9016–27.
Zhang W, Zhang Z, Zhang Y. The applying of carbon nanotubes in goal drug supply programs for most cancers therapies. Nanoscale Res Lett. 2011;6(1):1–22.
Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Polymeric vesicles: from drug carriers to nanoreactors and synthetic organelles. Acc Chem Res. 2011;44(10):1039–49.
Tang L, Zhao CY, Wang XH, Li RS, Yang JR, Huang YP, Liu ZS. Macromolecular crowding of molecular imprinting: a facile pathway to supply drug supply gadgets for zero-order sustained launch. Int J Pharm. 2015;496(2):822–33.
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug supply. In: Grobmyer SR, Moudgil BM, editors. Most cancers Nanotechnology. Totowa: Humana Press; 2010. p. 163–75.
Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, Lynch I. Environmental dimensions of the protein corona. Nat Nanotechnol. 2021;16(6):617–29.
Shubar HM, Dunay IR, Lachenmaier S, Dathe M, Bushrab FN, Mauludin R, Liesenfeld O. The function of apolipoprotein E in uptake of atovaquone into the mind in murine acute and reactivated toxoplasmosis. J Drug Goal. 2009;17(4):257–67.
Cai R, Chen C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv Mater. 2019;31(45):1805740.
Lipka J, Semmler-Behnke M, Sperling RA, Wenk A, Takenaka S, Schleh C, Kreyling WG. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials. 2010;31(25):6574–81.
Šamec N, Zottel A, Videtič Paska A, Jovčevska I. Nanomedicine and immunotherapy: a step additional in direction of precision drugs for glioblastoma. Molecules. 2020;25(3):490.
Liu L, Xu Ok, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Yang YY. Self-assembled cationic peptide nanoparticles as an environment friendly antimicrobial agent. Nature Nanotechnol. 2009;4(7):457–63.
Choi CHJ, Alabi CA, Webster P, Davis ME. Mechanism of lively concentrating on in strong tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci. 2010;107(3):1235–40.
Johnsen KB, Bak M, Melander F, Thomsen MS, Burkhart A, Kempen PJ, Moos T. Modulating the antibody density modifications the uptake and transport on the blood-brain barrier of each transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Management Launch. 2019;295:237–49.
Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, Qian Y. Twin-functional nanoparticles concentrating on amyloid plaques within the brains of Alzheimer’s illness mice. Biomaterials. 2014;35(1):456–65.
Belhadj Z, Ying M, Cao X, Hu X, Zhan C, Wei X, Lu W. Design of Y-shaped concentrating on materials for liposome-based multifunctional glioblastoma-targeted drug supply. J Management Launch. 2017;255:132–41.
Zhang J, Hu Ok, Di L, Wang P, Liu Z, Zhang J, Qiao H. Conventional natural drugs and nanomedicine: Converging disciplines to enhance therapeutic efficacy and human well being. Adv Drug Deliv Rev. 2021;178:113964.
Miao YB, Ren HX, Zhong Q, Tune FX. Tailoring a luminescent metallic− natural framework exact inclusion of Pt-Aptamer nanoparticle for noninvasive monitoring Parkinson’s illness. Chem Eng J. 2022;441: 136009.
Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative evaluation of drug supply to the mind through nasal route. J Management Launch. 2014;189:133–40.
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wooden MJ. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29(4):341–5.
Nagata T, Dwyer CA, Yoshida-Tanaka Ok, Ihara Ok, Ohyagi M, Kaburagi H, Yokota T. Ldl cholesterol-functionalized DNA/RNA heteroduplexes cross the blood–mind barrier and knock down genes within the rodent CNS. Nat Biotechnol. 2021;39(12):1529–36.
Rip J. Liposome applied sciences and drug supply to the CNS. Drug Discov Right now Technol. 2016;20:53–8.
Gernert M, Feja M. Bypassing the Blood-Mind Barrier: Direct Intracranial Drug Supply in Epilepsies. Pharmaceutics. 2020;12(12):1134.