Ergoktas, M. S. et al. Multispectral graphene-based electro-optical surfaces with reversible tunability from seen to microwave wavelengths. Nat. Photon. 15, 493–498 (2021).
Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).
Ergoktas, M. S. et al. Topological engineering of terahertz mild utilizing electrically tunable distinctive level singularities. Science 376, 184–188 (2022).
Peng, J. et al. Scalable electrochromic nanopixels utilizing plasmonics. Sci. Adv. 5, eaaw2205 (2019).
Xu, J., Mandal, J. & Raman, A. P. Broadband directional management of thermal emission. Science 372, 393–397 (2021).
Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials through topological transitions. Nat. Commun. 7, 11809 (2016).
Han, M. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Decide. Mater. 7, 1900267 (2019).
Qiu, L., Li, D. & Cheng, H.-M. Structural management of graphene-based supplies for unprecedented efficiency. ACS Nano 12, 5085–5092 (2018).
Liu, W. et al. Graphene charge-injection photodetectors. Nat. Electron. 5, 281–288 (2022).
Inoue, T., De Zoysa, M., Asano, T. & Noda, S. Realization of dynamic thermal emission management. Nat. Mater. 13, 928–931 (2014).
Low, T. et al. Polaritons in layered two-dimensional supplies. Nat. Mater. 16, 182–194 (2017).
Fang, Y., Ge, Y., Wang, C. & Zhang, H. Mid-infrared photonics utilizing 2D supplies: standing and challenges. Laser Photon. Rev. 14, 1900098 (2020).
Balci, O., Polat, E. O., Kakenov, N. & Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015).
VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).
Shahzad, F. et al. Electromagnetic interference shielding with 2D transition steel carbides (MXenes). Science 353, 1137–1140 (2016).
Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition steel carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).
Kamysbayev, V. et al. Covalent floor modifications and superconductivity of two-dimensional steel carbide MXenes. Science 369, 979–983 (2020).
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D steel carbides and nitrides (MXenes) for vitality storage. Nat. Rev. Mater. 2, 16098 (2017).
Lukatskaya, M. R. et al. Extremely-high-rate pseudocapacitive vitality storage in two-dimensional transition steel carbides. Nat. Vitality 2, 17105 (2017).
VahidMohammadi, A., Mojtabavi, M., Caffrey, N. M., Wanunu, M. & Beidaghi, M. Assembling 2D MXenes into extremely secure pseudocapacitive electrodes with excessive energy and vitality densities. Adv. Mater. 31, 1806931 (2019).
Fleischmann, S. et al. Steady transition from double-layer to Faradaic cost storage in confined electrolytes. Nat. Vitality 7, 222–228 (2022).
Wang, X. et al. Floor redox pseudocapacitance of partially oxidized titanium carbide MXene in water-in-salt electrolyte. ACS Vitality Lett. 7, 30–35 (2021).
Simon, P. & Gogotsi, Y. Views for electrochemical capacitors and associated units. Nat. Mater. 19, 1151–1163 (2020).
Zhao, S. et al. Versatile Nb4C3Tx movie with massive interlayer spacing for top‐efficiency supercapacitors. Adv. Func. Mater. 30, 2000815 (2020).
Wang, X. et al. Titanium carbide MXene reveals an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021).
Han, M. et al. Past Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020).
Mu, X. et al. Revealing the pseudo‐intercalation cost storage mechanism of MXenes in acidic electrolyte. Adv. Func. Mater. 29, 1902953 (2019).
Sarycheva, A. & Gogotsi, Y. Raman spectroscopy evaluation of the construction and floor chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020).
Tang, J. et al. Tuning the electrochemical efficiency of titanium carbide MXene by controllable in situ anodic oxidation. Angew. Chem. Int. Ed. 131, 18013–18019 (2019).
Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).
Che, R. C., Peng, L. M., Duan, X. F., Chen, Q. & Liang, X. L. Microwave absorption enhancement and sophisticated permittivity and permeability of Fe encapsulated inside carbon nanotubes. Adv. Mater. 16, 401–405 (2004).
Solar, H. et al. Cross-stacking aligned carbon-nanotube movies to tune microwave absorption frequencies and improve absorption intensities. Adv. Mater. 26, 8120–8125 (2014).