Kozel, T. R. & Burnham-Marusich, A. R. Level-of-care testing for infectious ailments: previous, current, and future. J. Clin. Microbiol. 55, 2313–2320 (2017).
Sohrabi, C. et al. World Well being Group declares world emergency: a assessment of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76 (2020).
Amanat, F. & Krammer, F. SARS-CoV-2 vaccines: standing report. Immunity 52, 583–589 (2020).
Sidwell, R. W., Dixon, G. J. & Mcneil, E. Quantitative research on materials as disseminators of viruses: I. Persistence of vaccinia virus on cotton and wool materials. Appl. Environ. Microbiol. 14, 55–59 (1966).
Dixon, G. J., Sidwell, R. W. & Mcneil, E. Quantitative research on materials as disseminators of viruses: II. Persistence of poliomyelitis virus on cotton and wool materials. Appl. Environ. Microbiol. 14, 183–188 (1966).
Sidwell, R. W., Dixon, G. J., Westbrook, L. & Forziati, F. H. Quantitative research on materials as disseminators of viruses: IV. Virus transmission by dry contact of materials. Appl. Environ. Microbiol. 19, 950–954 (1970).
Gerba, C. P. & Kennedy, D. Enteric virus survival throughout family laundering and impression of disinfection with sodium hypochlorite. Appl. Environ. Microbiol. 73, 4425–4428 (2007).
Katoh, I. et al. Potential danger of virus carryover by materials of non-public protecting robes. Entrance. Public Well being 7, 121 (2019).
Ansell, M. P. & Mwaikambo, L. Y. in Handbook of Textile Fibre Construction Vol. 2 (eds Eichhorn, S. J. et al.) 62–94 (Woodhead, 2009).
Hu, L. et al. Stretchable, porous, and conductive power textiles. Nano Lett. 10, 708–714 (2010).
Lei, L., Li, S. & Gu, Y. Cellulose synthase complexes: composition and regulation. Entrance. Plant Sci. 3, 75 (2012).
Turner, S. & Kumar, M. Cellulose synthase complicated group and cellulose microfibril construction. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170048 (2018).
Vasilev, Ok. Nanoengineered antibacterial coatings and supplies: a perspective. Coatings 9, 654 (2019).
Zhou, J., Hu, Z., Zabihi, F., Chen, Z. & Zhu, M. Progress and perspective of antiviral protecting materials. Adv. Fiber Mater. 2, 123–139 (2020).
Cloutier, M., Mantovani, D. & Rosei, F. Antibacterial coatings: challenges, views, and alternatives. Traits Biotechnol. 33, 637–652 (2015).
Karim, N. et al. Sustainable private protecting clothes for healthcare purposes: a assessment. ACS Nano 14, 12313–12340 (2020).
Balasubramaniam, B. et al. Antibacterial and antiviral practical supplies: chemistry and organic exercise towards tackling COVID-19-like pandemics. ACS Pharmacol. Transl. Sci. 4, 8–54 (2021).
Hassabo, A. G., El-Naggar, M. E., Mohamed, A. L. & Hebeish, A. A. Improvement of multifunctional modified cotton cloth with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr. Polym. 210, 144–156 (2019).
Suryaprabha, T. & Sethuraman, M. G. Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton cloth. Cellulose 24, 395–407 (2016).
Xu, Q. et al. Preparation of copper nanoparticles coated cotton materials with sturdy antibacterial properties. Fibers Polym. 19, 1004–1013 (2018).
Ali, A. et al. Copper coated multifunctional cotton materials. J. Ind. Textual content. 48, 448–464 (2017).
Anita, S., Ramachandran, T., Rajendran, R., Koushik, C. V. & Mahalakshmi, M. A examine of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton cloth. Textual content. Res. J. 81, 1081–1088 (2011).
Galdiero, S. et al. Silver nanoparticles as potential antiviral brokers. Molecules 16, 8894–8918 (2011).
Monette, A. & Mouland, A. J. Zinc and copper ions differentially regulate prion-like section separation dynamics of pan-virus nucleocapsid biomolecular condensates. Viruses 12, 1179 (2020).
Tavakoli, A. & Hashemzadeh, M. S. Inhibition of herpes simplex virus kind 1 by copper oxide nanoparticles. J. Virological Strategies 275, 113688 (2020).
Fang, L. et al. Influence of cell wall construction on the conduct of bacterial cells within the binding of copper and cadmium. Colloids Surf. A Physicochem. Eng. Asp. 347, 50–55 (2009).
Grass, G., Rensing, C. & Solioz, M. Metallic copper as an antimicrobial floor. Appl. Environ. Microbiol. 77, 1541–1547 (2011).
Warnes, S. L., Caves, V. & Keevil, C. W. Mechanism of copper floor toxicity in Escherichia coli O157:H7 and Salmonella includes quick membrane depolarization adopted by slower price of DNA destruction which differs from that noticed for Gram-positive micro organism. Environ. Microbiol. 14, 1730–1743 (2012).
Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial exercise of metals: mechanisms, molecular targets and purposes. Nat. Rev. Microbiol. 11, 371–384 (2013).
Isogai, A. NMR evaluation of cellulose dissolved in aqueous NaOH options. Cellulose 4, 99–107 (1997).
Philipp, B., Kunze, J. & Fink, H. P. in The Buildings of Cellulose Vol. 340 (ed. Atalla, R. H.) Ch. 1 (American Chemical Society, 1987).
Gaspar, D. et al. Nanocrystalline cellulose utilized concurrently because the gate dielectric and the substrate in versatile area impact transistors. Nanotechnology 25, 094008 (2014).
Li, T. et al. Cellulose ionic conductors with excessive differential thermal voltage for low-grade warmth harvesting. Nat. Mater. 18, 608–613 (2019).
Ogawa, Y. et al. Formation and stability of cellulose–copper–NaOH crystalline complicated. Cellulose 21, 999–1006 (2013).
Yang, C. et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021).
Rupp, H. & Weser, U. X-ray photoelectron spectroscopy of copper(II), copper(I), and combined valence techniques. Bioinorg. Chem. 6, 45–59 (1976).
Biesinger, M. C. Superior evaluation of copper X-ray photoelectron spectra. Surf. Interface Anal. 49, 1325–1334 (2017).
Lu, Q., Gao, F. & Komarneni, S. Cellulose-directed progress of selenium nanobelts in resolution. Chem. Mater. 18, 159–163 (2006).
Zhang, D. Y. et al. Microwave-assisted synthesis of PdNPs by cellulose resolution to organize 3D porous microspheres utilized on dyes discoloration. Carbohydr. Polym. 247, 116569 (2020).
Creager, A. N. The Lifetime of a Virus: Tobacco Mosaic Virus as an Experimental Mannequin, 1930–1965 (College of Chicago Press, 2002).
Scholthof, Ok. B. Tobacco mosaic virus: a mannequin system for plant biology. Annu. Rev. Phytopathol. 42, 13–34 (2004).
Caspar, D. L. D. in Advances in Protein Chemistry Vol. 18 (eds Anfinsen, C. B. et al.) 37–121 (Educational Press, 1964).
Noyce, J. O., Michels, H. & Keevil, C. W. Inactivation of influenza A virus on copper versus stainless-steel surfaces. Appl. Environ. Microbiol. 73, 2748–2750 (2007).
Borkow, G., Lara, H. H., Covington, C. Y., Nyamathi, A. & Gabbay, J. Deactivation of human immunodeficiency virus kind 1 in medium by copper oxide-containing filters. Antimicrob. Brokers Chemother. 52, 518–525 (2008).
Warnes, S. L. & Keevil, C. W. Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE 8, e75017 (2013).
Knill, C. J. & Kennedy, J. F. Degradation of cellulose beneath alkaline situations. Carbohydr. Polym. 51, 281–300 (2003).
Shao, C. et al. Mechanism for the depolymerization of cellulose beneath alkaline situations. J. Mol. Modeling 24, 124 (2018).
Hearle, J. W. S. & Sparrow, J. T. Additional research of the fractography of cotton fibers. Textual content. Res. J. 49, 268–282 (1979).
Hearle, J. W. S. in Fiber Fracture (eds Elices, M. & Llorca, J.) 57–71 (Elsevier, 2002).
Mia, R. et al. Overview on numerous forms of air pollution downside in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. J. Tex. Eng. Fash. Technol. 5, 220–226 (2019).
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. Results of textile dyes on well being and the setting and bioremediation potential of dwelling organisms. Biotechnol. Res. Innov. 3, 275–290 (2019).
Leshchev, D. et al. The Internal Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for supplies analysis. J. Synchrotron Radiat. 29, 1095–1106 (2022).
Ressler, T. WinXAS: a program for X-ray absorption spectroscopy information evaluation beneath MS-Home windows. J. Synchrotron Radiat. 5, 118–122 (1998).
Padmanabhan, M. S., Kramer, S. R., Wang, X. & Culver, J. N. Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to boost virus an infection. J. Virol. 82, 2477–2485 (2008).
Jalily, P. H. et al. Mechanisms of motion of novel influenza A/M2 viroporin inhibitors derived from hexamethylene amiloride. Mol. Pharmacol. 90, 80–95 (2016).