Tonetti MS, Jepsen S, Jin L, Otomo-Corgel J. Impression of the worldwide burden of periodontal illnesses on well being, vitamin and wellbeing of mankind: a name for international motion. J Clin Periodontol. 2017;44:456–62. https://doi.org/10.1111/jcpe.12732.
Genco RJ, Sanz M. Medical and public well being implications of periodontal and systemic illnesses: an summary. Periodontol. 2000;2020(83):7–13. https://doi.org/10.1111/prd.12344.
Xu XY, Li X, Wang J, He XT, Solar HH, Chen FM. Concise overview: periodontal tissue regeneration utilizing stem cells: methods and translational concerns. Stem Cells Transl Med. 2019;8:392–403. https://doi.org/10.1002/sctm.18-0181.
Ravidà A, Qazi M, Rodriguez MV, Galli M, Saleh MHA, Troiano G, Wang HL. The affect of the interplay between staging, grading and extent on tooth loss attributable to periodontitis. J Clin Periodontol. 2021;48:648–58. https://doi.org/10.1111/jcpe.13430.
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic irritation. Nat Rev Immunol. 2015;15:30–44. https://doi.org/10.1038/nri3785.
Chen FM, Wu LA, Zhang M, Zhang R, Solar HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: guarantees, methods, and translational views. Biomaterials. 2011;32:3189–209. https://doi.org/10.1016/j.biomaterials.2010.12.032.
Luan X, Zhou X, Trombetta-eSilva J, Francis M, Gaharwar AK, Atsawasuwan P, Diekwisch TGH. MicroRNAs and periodontal homeostasis. J Dent Res. 2017;96:491–500. https://doi.org/10.1177/0022034516685711.
Hans M, Hans VM. Toll-like receptors and their twin position in periodontitis: a overview. J Oral Sci. 2011;53:263–71. https://doi.org/10.2334/josnusd.53.263.
Wang IC, Sugai JV, Majzoub J, Johnston J, Giannobile WV, Wang HL. Professional-inflammatory profiles in heart problems sufferers with peri-implantitis. J Periodontol. 2022;93:824–36. https://doi.org/10.1002/JPER.21-0419.
Tsukasaki M, Komatsu N, Nagashima Okay, Nitta T, Pluemsakunthai W, Shukunami C, Iwakura Y, Nakashima T, Okamoto Okay, Takayanagi H. Host protection towards oral microbiota by bone-damaging T cells. Nat Commun. 2018;9:701. https://doi.org/10.1038/s41467-018-03147-6.
Deatherage BL, Cookson BT. Membrane vesicle launch in micro organism, eukaryotes, and archaea: a conserved but underappreciated facet of microbial life. Infect Immun. 2012;80:1948–57. https://doi.org/10.1128/IAI.06014-11.
Woith E, Fuhrmann G, Melzig MF. Extracellular vesicles-connecting kingdoms. Int J Mol Sci. 2019;20:5695. https://doi.org/10.3390/ijms20225695.
Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, Emanueli C, Gasecka A, Hendrix A, Hill AF, Lacroix R, Lee Y, van Leeuwen TG, Mackman N, Mäger I, Nolan JP, van der Pol E, Pegtel DM, Sahoo S, Siljander PRM, Sturk G, de Wever O, Nieuwland R. Methodological tips to review extracellular vesicles. Circ Res. 2017;120:1632–48. https://doi.org/10.1161/CIRCRESAHA.117.309417.
van Niel G, D’Angelo G, Raposo G. Shedding mild on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28. https://doi.org/10.1038/nrm.2017.125.
Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor development. Nat Immunol. 2021;22:560–70. https://doi.org/10.1038/s41590-021-00899-0.
Kornman KS. Mapping the pathogenesis of periodontitis: a brand new look. J Periodontol. 2008;79(Suppl 8):1560–8. https://doi.org/10.1902/jop.2008.080213.
Yucel-Lindberg T, Båge T. Inflammatory mediators within the pathogenesis of periodontitis. Professional Rev Mol Med. 2013;15:e7. https://doi.org/10.1017/erm.2013.8.
Meyle J, Chapple I. Molecular elements of the pathogenesis of periodontitis. Periodontol. 2000;2015(69):7–17. https://doi.org/10.1111/prd.12104.
Stremersch S, De Smedt SC, Raemdonck Okay. Therapeutic and diagnostic purposes of extracellular vesicles. J Management Launch. 2016;244:167–83. https://doi.org/10.1016/j.jconrel.2016.07.054.
Wiklander OPB, Brennan MÁ, Lötvall J, Breakefield XO, El Andaloussi S. Advances in therapeutic purposes of extracellular vesicles. Sci Transl Med. 2019;11:eaav8521. https://doi.org/10.1126/scitranslmed.aav8521.
Riazifar M, Pone EJ, Lötvall J, Zhao W. Stem cell extracellular vesicles: prolonged messages of regeneration. Annu Rev Pharmacol Toxicol. 2017;57:125–54. https://doi.org/10.1146/annurev-pharmtox-061616-030146.
Hua S, Bartold PM, Gulati Okay, Moran CS, Ivanovski S, Han P. Periodontal and dental pulp cell-derived small extracellular vesicles: a overview of the present standing. Nanomaterials (Basel). 2021;11:1858. https://doi.org/10.3390/nano11071858.
Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, Wang Y, Yan B, Xie W, Liu F, et al. Human umbilical twine mesenchymal stem cell derived exosomes encapsulated in useful peptide hydrogels promote cardiac restore. Biomater Sci. 2019;7:2920–33. https://doi.org/10.1039/c9bm00101h.
Ahn SH, Ryu SW, Choi H, You S, Park J, Choi C. Manufacturing therapeutic exosomes: from bench to trade. Mol Cells. 2022;45:284–90. https://doi.org/10.14348/molcells.2022.2033.
Kalluri R, LeBleu VS. The biology, operate, and biomedical purposes of exosomes. Science. 2020;367:eaau6977. https://doi.org/10.1126/science.aau6977.
Wen C, Seeger RC, Fabbri M, Wang L, Wayne AS, Jong AY. Organic roles and potential purposes of immune cell-derived extracellular vesicles. J Extracell Vesicles. 2017;6:1400370. https://doi.org/10.1080/20013078.2017.1400370.
Tiku V, Tan MW. Host immunity and mobile responses to bacterial outer membrane vesicles. Developments Immunol. 2021;42:1024–36. https://doi.org/10.1016/j.it.2021.09.006.
Xie J, Li Q, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. The large biomedical potential of bacterial extracellular vesicles. Developments Biotechnol. 2022;40:1173–94. https://doi.org/10.1016/j.tibtech.2022.03.005.
Toyofuku M, Nomura N, Eberl L. Sorts and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17:13–24. https://doi.org/10.1038/s41579-018-0112-2.
Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao CC, Kurosawa M, Gademann Okay, Pilhofer M, Nomura N, Eberl L. Prophage-triggered membrane vesicle formation via peptidoglycan injury in Bacillus subtilis. Nat Commun. 2017;8:481. https://doi.org/10.1038/s41467-017-00492-w.
Hafiane A, Daskalopoulou SS. Extracellular vesicles traits and rising roles in atherosclerotic heart problems. Metabolism. 2018;85:213–22. https://doi.org/10.1016/j.metabol.2018.04.008.
Takeuchi T. Pathogenic and protecting roles of extracellular vesicles in neurodegenerative illnesses. J Biochem. 2021;169:181–6. https://doi.org/10.1093/jb/mvaa131.
Novello S, Pellen-Mussi P, Jeanne S. Mesenchymal stem cell-derived small extracellular vesicles as cell-free remedy: views in periodontal regeneration. J Periodontal Res. 2021;56:433–42. https://doi.org/10.1111/jre.12866.
Bartold PM, Van Dyke TE. Periodontitis: a host-mediated disruption of microbial homeostasis. Unlearning realized ideas. Periodontol. 2000;2013(62):203–17. https://doi.org/10.1111/j.1600-0757.2012.00450.x.
Wang L, Wang J, Jin Y, Gao H, Lin X. Oral administration of all-trans retinoic acid suppresses experimental periodontitis by modulating the Th17/Treg imbalance. J Periodontol. 2014;85:740–50. https://doi.org/10.1902/jop.2013.130132.
Wang L, Guan N, Jin Y, Lin X, Gao H. Subcutaneous vaccination with Porphyromonas gingivalis ameliorates periodontitis by modulating Th17/Treg imbalance in a murine mannequin. Int Immunopharmacol. 2015;25:65–73. https://doi.org/10.1016/j.intimp.2015.01.007.
Zheng Y, Dong C, Yang J, Jin Y, Zheng W, Zhou Q, Liang Y, Bao L, Feng G, Ji J, Feng X, Gu Z. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg stability by focusing on sirtuin-1 in continual periodontitis. J Cell Physiol. 2019;234:20662–74. https://doi.org/10.1002/jcp.28671.
Zhao M, Dai W, Wang H, Xue C, Feng J, He Y, Wang P, Li S, Bai D, Shu R. Periodontal ligament fibroblasts regulate osteoblasts by exosome secretion induced by inflammatory stimuli. Arch Oral Biol. 2019;105:27–34. https://doi.org/10.1016/j.archoralbio.2019.06.002.
Zhang Z, Shuai Y, Zhou F, Yin J, Hu J, Guo S, Wang Y, Liu W. PDLSCs regulate angiogenesis of periodontal ligaments through VEGF transferred by exosomes in periodontitis. Int J Med Sci. 2020;17:558–67. https://doi.org/10.7150/ijms.40918.
Bi J, Koivisto L, Owen G, Huang P, Wang Z, Shen Y, Bi L, Rokka A, Haapasalo M, Heino J, Häkkinen L, Larjava HS. Epithelial microvesicles promote an inflammatory phenotype in fibroblasts. J Dent Res. 2016;95:680–8. https://doi.org/10.1177/0022034516633172.
Nowotny A, Behling UH, Hammond B, Lai CH, Listgarten M, Pham PH, Sanavi F. Launch of poisonous microvesicles by Actinobacillus actinomycetemcomitans. Infect Immun. 1982;37:151–4. https://doi.org/10.1128/iai.37.1.151-154.1982.
Grenier D, Mayrand D. Purposeful characterization of extracellular vesicles produced by Bacteroides gingivalis. Infect Immun. 1987;55:111–7. https://doi.org/10.1128/iai.55.1.111-117.1987.
Ma L, Cao Z. Membrane vesicles from periodontal pathogens and their potential roles in periodontal illness and systemic sicknesses. J Periodontal Res. 2021;56:646–55. https://doi.org/10.1111/jre.12884.
Pathirana RD, Kaparakis-Liaskos M. Bacterial membrane vesicles: biogenesis, immune regulation and pathogenesis. Cell Microbiol. 2016;18:1518–24. https://doi.org/10.1111/cmi.12658.
Kato S, Kowashi Y, Demuth DR. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb Pathog. 2002;32:1–13. https://doi.org/10.1006/mpat.2001.0474.
Veith PD, Chen YY, Gorasia DG, Chen D, Glew MD, O’Brien-Simpson NM, Cecil JD, Holden JA, Reynolds EC. Porphyromonas gingivalis outer membrane vesicles solely include outer membrane and periplasmic proteins and carry a cargo enriched with virulence elements. J Proteome Res. 2014;13:2420–32. https://doi.org/10.1021/pr401227e.
Jin JS, Kwon SO, Moon DC, Gurung M, Lee JH, Kim SI, Lee JC. Acinetobacter baumannii secretes cytotoxic outer membrane protein A through outer membrane vesicles. PLoS ONE. 2011;6:e17027. https://doi.org/10.1371/journal.pone.0017027.
Unal CM, Schaar V, Riesbeck Okay. Bacterial outer membrane vesicles in illness and preventive medication. Semin Immunopathol. 2011;33:395–408. https://doi.org/10.1007/s00281-010-0231-y.
Ho MH, Chen CH, Goodwin JS, Wang BY, Xie H. Purposeful benefits of Porphyromonas gingivalis vesicles. PLoS ONE. 2015;10: e0123448. https://doi.org/10.1371/journal.pone.0123448.
Fleetwood AJ, Lee MKS, Singleton W, Achuthan A, Lee MC, O’Brien-Simpson NM, Prepare dinner AD, Murphy AJ, Dashper SG, Reynolds EC, Hamilton JA. Metabolic transforming, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles. Entrance Cell Infect Microbiol. 2017;7:351. https://doi.org/10.3389/fcimb.2017.00351.
Cecil JD, O’Brien-Simpson NM, Lenzo JC, Holden JA, Singleton W, Perez-Gonzalez A, Mansell A, Reynolds EC. Outer membrane vesicles prime and activate macrophage inflammasomes and cytokine secretion in vitro and in vivo. Entrance Immunol. 2017;8:1017. https://doi.org/10.3389/fimmu.2017.01017.
Friedrich V, Gruber C, Nimeth I, Pabinger S, Sekot G, Posch G, Altmann F, Messner P, Andrukhov O, Schäffer C. Outer membrane vesicles of Tannerella forsythia: biogenesis, composition, and virulence. Mol Oral Microbiol. 2015;30:451–73. https://doi.org/10.1111/omi.12104.
Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen speculation. Nat Rev Microbiol. 2012;10:717–25. https://doi.org/10.1038/nrmicro2873.
Gui MJ, Dashper SG, Slakeski N, Chen YY, Reynolds EC. Spheres of affect: Porphyromonas gingivalis outer membrane vesicles. Mol Oral Microbiol. 2016;31:365–78. https://doi.org/10.1111/omi.12134.
Kamaguchi A, Nakayama Okay, Ichiyama S, Nakamura R, Watanabe T, Ohta M, Baba H, Ohyama T. Impact of Porphyromonas gingivalis vesicles on coaggregation of Staphylococcus aureus to oral microorganisms. Curr Microbiol. 2003;47:485–91. https://doi.org/10.1007/s00284-003-4069-6.
Inagaki S, Onishi S, Kuramitsu HK, Sharma A. Porphyromonas gingivalis vesicles improve attachment, and the leucine-rich repeat BspA protein is required for invasion of epithelial cells by “Tannerella forsythia.” Infect Immun. 2006;74:5023–8. https://doi.org/10.1128/IAI.00062-06.
Grenier D. Porphyromonas gingivalis outer membrane vesicles mediate coaggregation and piggybacking of Treponema denticola and Lachnoanaerobaculum saburreum. Int J Dent. 2013;2013: 305476. https://doi.org/10.1155/2013/305476.
Lindholm M, Min Aung Okay, Nyunt Wai S, Oscarsson J. Function of OmpA1 and OmpA2 in Aggregatibacter actinomycetemcomitans and Aggregatibacter aphrophilus serum resistance. J Oral Microbiol. 2018;11:1536192. https://doi.org/10.1080/20002297.2018.1536192.
Lindholm M, Metsäniitty M, Granström E, Oscarsson J. Outer membrane vesicle-mediated serum safety in Aggregatibacter actinomycetemcomitans. J Oral Microbiol. 2020;12:1747857. https://doi.org/10.1080/20002297.2020.1747857.
Duncan L, Yoshioka M, Chandad F, Grenier D. Lack of lipopolysaccharide receptor CD14 from the floor of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog. 2004;36:319–25. https://doi.org/10.1016/j.micpath.2004.02.004.
Waller T, Kesper L, Hirschfeld J, Dommisch H, Kölpin J, Oldenburg J, Uebele J, Hoerauf A, Deschner J, Jepsen S, et al. Porphyromonas gingivalis outer membrane vesicles induce selective tumor necrosis issue tolerance in a toll-like receptor 4- and mTOR-dependent method. Infect Immun. 2016;84:1194–204. https://doi.org/10.1128/IAI.01390-15.
Choi JW, Kim SC, Hong SH, Lee HJ. Secretable small RNAs through outer membrane vesicles in periodontal pathogens. J Dent Res. 2017;96:458–66. https://doi.org/10.1177/0022034516685071.
Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis issue to periodontal tissue destruction. J Periodontol. 2003;74:391–401. https://doi.org/10.1902/jop.2003.74.3.391.
Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–90. https://doi.org/10.1038/nrmicro2337.
Ebersole JL, Graves CL, Gonzalez OA, Dawson D third, Morford LA, Huja PE, Hartsfield JK Jr, Huja SS, Pandruvada S, Pockets SM. Getting older, irritation, immunity and periodontal illness. Periodontol. 2000;2016(72):54–75. https://doi.org/10.1111/prd.12135.
Ismail S, Hampton MB, Keenan JI. Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 manufacturing by gastric epithelial cells. Infect Immun. 2003;71:5670–5. https://doi.org/10.1128/IAI.71.10.5670-5675.2003.
Marion CR, Lee J, Sharma L, Park KS, Lee C, Liu W, Liu P, Feng J, Gho YS, Dela Cruz CS. Toll-like receptors 2 and 4 modulate pulmonary irritation and host elements mediated by outer membrane vesicles derived from Acinetobacter baumannii. Infect Immun. 2019;87:e00243-e319. https://doi.org/10.1128/IAI.00243-19.
Aruni AW, Mishra A, Dou Y, Chioma O, Hamilton BN, Fletcher HM. Filifactor alocis—a brand new rising periodontal pathogen. Microbes Infect. 2015;17:517–30. https://doi.org/10.1016/j.micinf.2015.03.011.
Kim HY, Lim Y, An SJ, Choi BK. Characterization and immunostimulatory exercise of extracellular vesicles from Filifactor alocis. Mol Oral Microbiol. 2020;35:1–9. https://doi.org/10.1111/omi.12272.
Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, irritation and illness. Nat Immunol. 2006;7:1250–7. https://doi.org/10.1038/ni1412.
Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA, Parkington HC, Le Bourhis L, Karrar A, Viala J, Mak J, Hutton ML, Davies JK, Crack PJ, Hertzog PJ, Philpott DJ, Girardin SE, Whitchurch CB, Ferrero RL. Bacterial membrane vesicles ship peptidoglycan to NOD1 in epithelial cells. Cell Microbiol. 2010;12:372–85. https://doi.org/10.1111/j.1462-5822.2009.01404.x.
Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol. 2015;15:375–87. https://doi.org/10.1038/nri3837.
Almubarak A, Tanagala KKK, Papapanou PN, Lalla E, Momen-Heravi F. Disruption of monocyte and macrophage homeostasis in periodontitis. Entrance Immunol. 2020;11:330. https://doi.org/10.3389/fimmu.2020.00330.
Hajishengallis G. New developments in neutrophil biology and periodontitis. Periodontol. 2000;2020(82):78–92. https://doi.org/10.1111/prd.12313.
Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interplay. Genes Dev. 2005;19:2645–55. https://doi.org/10.1101/gad.1299905.
Zingl FG, Leitner DR, Thapa HB, Schild S. Outer membrane vesicles as versatile instruments for therapeutic approaches. microLife. 2021;2:uqab006. https://doi.org/10.1093/femsml/uqab006.
Cecil JD, O’Brien-Simpson NM, Lenzo JC, Holden JA, Chen YY, Singleton W, Gause KT, Yan Y, Caruso F, Reynolds EC. Differential responses of sample recognition receptors to outer membrane vesicles of three periodontal pathogens. PLoS ONE. 2016;11: e0151967. https://doi.org/10.1371/journal.pone.0151967.
Thay B, Damm A, Kufer TA, Wai SN, Oscarsson J. Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and set off NOD1- and NOD2-dependent NF-κB activation. Infect Immun. 2014;82:4034–46. https://doi.org/10.1128/IAI.01980-14.
Nakao R, Takashiba S, Kosono S, Yoshida M, Watanabe H, Ohnishi M, Senpuku H. Impact of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune responses. Microbes Infect. 2014;16:6–16. https://doi.org/10.1016/j.micinf.2013.10.005.
Bartruff JB, Yukna RA, Layman DL. Outer membrane vesicles from Porphyromonas gingivalis have an effect on the expansion and performance of cultured human gingival fibroblasts and umbilical vein endothelial cells. J Periodontol. 2005;76:972–9. https://doi.org/10.1902/jop.2005.76.6.972.
Furuta N, Takeuchi H, Amano A. Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes mobile useful impairment. Infect Immun. 2009;77:4761–70. https://doi.org/10.1128/IAI.00841-09.
Baba A, Abe N, Kadowaki T, Nakanishi H, Ohishi M, Asao T, Yamamoto Okay. Arg-gingipain is liable for the degradation of cell adhesion molecules of human gingival fibroblasts and their dying induced by Porphyromonas gingivalis. Biol Chem. 2001;382:817–24. https://doi.org/10.1515/BC.2001.099.
Rompikuntal PK, Thay B, Khan MK, Alanko J, Penttinen AM, Asikainen S, Wai SN, Oscarsson J. Perinuclear localization of internalized outer membrane vesicles carrying lively cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun. 2012;80:31–42. https://doi.org/10.1128/IAI.06069-11.
Tune MK, Kim HY, Choi BK, Kim HH. Filifactor alocis-derived extracellular vesicles inhibit osteogenesis via TLR2 signaling. Mol Oral Microbiol. 2020;35:202–10. https://doi.org/10.1111/omi.12307.
Kim HY, Tune MK, Gho YS, Kim HH, Choi BK. Extracellular vesicles derived from the periodontal pathogen Filifactor alocis induce systemic bone loss via Toll-like receptor 2. J Extracell Vesicles. 2021;10: e12157. https://doi.org/10.1002/jev2.12157.
Chen G, Solar Q, Cai Q, Zhou H. Outer membrane vesicles from Fusobacterium nucleatum change M0-like macrophages towards the M1 phenotype to destroy periodontal tissues in mice. Entrance Microbiol. 2022;13: 815638. https://doi.org/10.3389/fmicb.2022.815638.
Cullinan MP, Seymour GJ. Periodontal illness and systemic sickness: will the proof ever be sufficient? Periodontol. 2000;2013(62):271–86. https://doi.org/10.1111/prd.12007.
Gaudilliere DK, Culos A, Djebali Okay, Tsai AS, Ganio EA, Choi WM, Han X, Maghaireh A, Choisy B, Baca Q, et al. Systemic immunologic penalties of continual periodontitis. J Dent Res. 2019;98:985–93. https://doi.org/10.1177/0022034519857714.
Zhang Z, Liu D, Liu S, Zhang S, Pan Y. The Function of Porphyromonas gingivalis outer membrane vesicles in periodontal illness and associated systemic illnesses. Entrance Cell Infect Microbiol. 2021;10: 585917. https://doi.org/10.3389/fcimb.2020.585917.
Jia Y, Guo B, Yang W, Zhao Q, Jia W, Wu Y. Rho kinase mediates Porphyromonas gingivalis outer membrane vesicle-induced suppression of endothelial nitric oxide synthase via ERK1/2 and p38 MAPK. Arch Oral Biol. 2015;60:488–95. https://doi.org/10.1016/j.archoralbio.2014.12.009.
Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial barrier and its abnormalities in heart problems. Entrance Physiol. 2015;6:365. https://doi.org/10.3389/fphys.2015.0036.
Farrugia C, Stafford GP, Murdoch C. Porphyromonas gingivalis outer membrane vesicles enhance vascular permeability. J Dent Res. 2020;99:1494–501. https://doi.org/10.1177/0022034520943187.
Yang WW, Guo B, Jia WY, Jia Y. Porphyromonas gingivalis-derived outer membrane vesicles promote calcification of vascular easy muscle cells via ERK1/2-RUNX2. FEBS Open Bio. 2016;6:1310–9. https://doi.org/10.1002/2211-5463.12151.
Singhrao SK, Olsen I. Are Porphyromonas gingivalis outer membrane vesicles microbullets for sporadic Alzheimer’s illness manifestation? J Alzheimers Dis Rep. 2018;2:219–28. https://doi.org/10.3233/ADR-180080.
Han EC, Choi SY, Lee Y, Park JW, Hong SH, Lee HJ. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α manufacturing in human macrophages and cross the blood-brain barrier in mice. FASEB J. 2019;33:13412–22. https://doi.org/10.1096/fj.201901575R.
Pritchard AB, Fabian Z, Lawrence CL, Morton G, Crean S, Alder JE. An investigation into the results of outer membrane vesicles and lipopolysaccharide of Porphyromonas gingivalis on blood–mind barrier integrity, permeability, and disruption of scaffolding proteins in a human in vitro mannequin. J Alzheimers Dis. 2022;86:343–64. https://doi.org/10.3233/JAD-215054.
Ha JY, Choi SY, Lee JH, Hong SH, Lee HJ. Supply of periodontopathogenic extracellular vesicles to mind monocytes and microglial IL-6 promotion by RNA cargo. Entrance Mol Biosci. 2020;7: 596366. https://doi.org/10.3389/fmolb.2020.596366.
Seyama M, Yoshida Okay, Yoshida Okay, Fujiwara N, Ono Okay, Eguchi T, Kawai H, Guo J, Weng Y, Haoze Y, et al. Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver. Biochim Biophys Acta Mol Foundation Dis. 2020;1866: 165731. https://doi.org/10.1016/j.bbadis.2020.165731.
Search engine optimization BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Younger M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55. https://doi.org/10.1016/S0140-6736(04)16627-0.
Tassi SA, Sergio NZ, Misawa MYO, Villar CC. Efficacy of stem cells on periodontal regeneration: systematic overview of pre-clinical research. J Periodontal Res. 2017;52:793–812. https://doi.org/10.1111/jre.12455.
Tune N, Scholtemeijer M, Shah Okay. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Developments Pharmacol Sci. 2020;41:653–64. https://doi.org/10.1016/j.ideas.2020.06.009.
Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M. Moral and questions of safety of stem cell-based remedy. Int J Med Sci. 2018;15:36–45. https://doi.org/10.7150/ijms.21666.
Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27:523–31. https://doi.org/10.1016/j.stem.2020.09.014.
Zarubova J, Hasani-Sadrabadi MM, Dashtimoghadam E, Zhang X, Ansari S, Li S, Moshaverinia A. Engineered supply of dental stem-cell-derived extracellular vesicles for periodontal tissue regeneration. Adv Healthc Mater. 2022;11: e2102593. https://doi.org/10.1002/adhm.202102593.
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: towards cell-free therapeutic purposes. Mol Ther. 2015;23:812–23. https://doi.org/10.1038/mt.2015.44.
Li CJ, Fang QH, Liu ML, Lin JN. Present understanding of the position of adipose-derived extracellular vesicles in metabolic homeostasis and illnesses: communication from the space between cells/tissues. Theranostics. 2020;10:7422–35. https://doi.org/10.7150/thno.42167.
Veerman RE, GüçlülerAkpinar G, Eldh M, Gabrielsson S. Immune cell-derived extracellular vesicles—capabilities and therapeutic purposes. Developments Mol Med. 2019;25:382–94. https://doi.org/10.1016/j.molmed.2019.02.003.
Maumus M, Rozier P, Boulestreau J, Jorgensen C, Noël D. Mesenchymal stem cell-derived extracellular vesicles: alternatives and challenges for scientific translation. Entrance Bioeng Biotechnol. 2020;8:997. https://doi.org/10.3389/fbioe.2020.00997.
Mohammed E, Khalil E, Sabry D. Impact of adipose-derived stem cells and their exo as adjunctive remedy to nonsurgical periodontal therapy: a histologic and histomorphometric research in rats. Biomolecules. 2018;8:167. https://doi.org/10.3390/biom8040167.
Wei J, Tune Y, Du Z, Yu F, Zhang Y, Jiang N, Ge X. Exosomes derived from human exfoliated deciduous enamel ameliorate grownup bone loss in mice via selling osteogenesis. J Mol Histol. 2020;51:455–66. https://doi.org/10.1007/s10735-020-09896-3.
Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffer PJ, Saris DBF, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics. 2018;8:906–20. https://doi.org/10.7150/thno.20746.
Nuñez J, Vignoletti F, Caffesse RG, Sanz M. Mobile remedy in periodontal regeneration. Periodontol. 2000;2019(79):107–16. https://doi.org/10.1111/prd.12250.
Han XD, Chen HM, Li C. Impact of human periodontal ligament stem cell-derived extracellular vesicles on macrophage pyroptosis and periodontal inflammatory harm in periodontitis. Cells Tissues Organs. 2022;211:57–72. https://doi.org/10.1159/000519569.
Shen Z, Kuang S, Zhang Y, Yang M, Qin W, Shi X, Lin Z. Chitosan hydrogel integrated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice through a macrophage-dependent mechanism. Bioact Mater. 2020;5:1113–26. https://doi.org/10.1016/j.bioactmat.2020.07.002.
Zheng J, Kong Y, Hu X, Li Z, Li Y, Zhong Y, Wei X, Ling J. MicroRNA-enriched small extracellular vesicles possess odonto-immunomodulatory properties for modulating the immune response of macrophages and selling odontogenesis. Stem Cell Res Ther. 2020;11:517. https://doi.org/10.1186/s13287-020-02039-1.
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs improve M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306–24. https://doi.org/10.1016/j.actbio.2020.12.046.
Wang Z, Maruyama Okay, Sakisaka Y, Suzuki S, Tada H, Suto M, Saito M, Yamada S, Nemoto E. Cyclic stretch pressure induces periodontal ligament cells to secrete exosomes that suppress IL-1β manufacturing via the inhibition of the NF-κB signaling pathway in macrophages. Entrance Immunol. 2019;10:1310. https://doi.org/10.3389/fimmu.2019.01310.
Chew JRJ, Chuah SJ, Teo KYW, Zhang S, Lai RC, Fu JH, Lim LP, Lim SK, Toh WS. Mesenchymal stem cell exosomes improve periodontal ligament cell capabilities and promote periodontal regeneration. Acta Biomater. 2019;89:252–64. https://doi.org/10.1016/j.actbio.2019.03.021.
Liu Y, Zhuang X, Yu S, Yang N, Zeng J, Liu X, Chen X. Exosomes derived from stem cells from apical papilla promote craniofacial smooth tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Res Ther. 2021;12:76. https://doi.org/10.1186/s13287-021-02151-w.
Wu J, Chen L, Wang R, Tune Z, Shen Z, Zhao Y, Huang S, Lin Z. Exosomes secreted by stem cells from human exfoliated deciduous enamel promote alveolar bone defect restore via the regulation of angiogenesis and osteogenesis. ACS Biomater Sci Eng. 2019;5:3561–71. https://doi.org/10.1021/acsbiomaterials.9b00607.
Wang M, Li J, Ye Y, He S, Tune J. SHED-derived conditioned exosomes improve the osteogenic differentiation of PDLSCs through Wnt and BMP signaling in vitro. Differentiation. 2020;111:1–11. https://doi.org/10.1016/j.diff.2019.10.003.
Wu M, Liu X, Li Z, Huang X, Guo H, Guo X, Yang X, Li B, Xuan Okay, Jin Y. SHED mixture exosomes shuttled miR-26a promote angiogenesis in pulp regeneration through TGF-β/SMAD2/3 signalling. Cell Prolif. 2021;54: e13074. https://doi.org/10.1111/cpr.13074.
Lei F, Li M, Lin T, Zhou H, Wang F, Su X. Remedy of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomater. 2022;141:333–43. https://doi.org/10.1016/j.actbio.2021.12.035.
Yamada N, Tsujimura N, Kumazaki M, Shinohara H, Taniguchi Okay, Nakagawa Y, Naoe T, Akao Y. Colorectal most cancers cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim Biophys Acta. 2014;1839:1256–72. https://doi.org/10.1016/j.bbagrm.2014.09.002.
Xu XY, Tian BM, Xia Y, Xia YL, Li X, Zhou H, Tan YZ, Chen FM. Exosomes derived from P2X7 receptor gene-modified cells rescue inflammation-compromised periodontal ligament stem cells from dysfunction. Stem Cells Transl Med. 2020;9:1414–30. https://doi.org/10.1002/sctm.19-0418.
Lv PY, Gao PF, Tian GJ, Yang YY, Mo FF, Wang ZH, Solar L, Kuang MJ, Wang YL. Osteocyte-derived exosomes induced by mechanical pressure promote human periodontal ligament stem cell proliferation and osteogenic differentiation through the miR-181b-5p/PTEN/AKT signaling pathway. Stem Cell Res Ther. 2020;11:295. https://doi.org/10.1186/s13287-020-01815-3.
Shi W, Guo S, Liu L, Liu Q, Huo F, Ding Y, Tian W. Small extracellular vesicles from lipopolysaccharide-preconditioned dental follicle cells promote periodontal regeneration in an inflammatory microenvironment. ACS Biomater Sci Eng. 2020;6:5797–810. https://doi.org/10.1021/acsbiomaterials.0c00882.
Zhou H, Li X, Wu RX, He XT, An Y, Xu XY, Solar HH, Wu LA, Chen FM. Periodontitis-compromised dental pulp stem cells secrete extracellular vesicles carrying miRNA-378a promote native angiogenesis by focusing on Sufu to activate the Hedgehog/Gli1 signalling. Cell Prolif. 2021;54: e13026. https://doi.org/10.1111/cpr.13026.
Zhou H, Zhang L, Chen Y, Zhu CH, Chen FM, Li A. Analysis progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif. 2022;55: e13162. https://doi.org/10.1111/cpr.13162.
Bitto NJ, Kaparakis-Liaskos M. The therapeutic advantage of bacterial membrane vesicles. Int J Mol Sci. 2017;18:1287. https://doi.org/10.3390/ijms18061287.
Baart GJ, de Jong G, Philippi M, van’t Riet Okay, van der Pol LA, Beuvery EC, Tramper J, Martens DE. Scale-up for bulk manufacturing of vaccine towards meningococcal illness. Vaccine. 2007;25:6399–408. https://doi.org/10.1016/j.vaccine.2007.06.008.
Turner L, Praszkier J, Hutton ML, Steer D, Ramm G, Kaparakis-Liaskos M, Ferrero RL. Elevated outer membrane vesicle formation in a Helicobacter pylori tolB mutant. Helicobacter. 2015;20:269–83. https://doi.org/10.1111/hel.12196.
Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Morisaki JH, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527:323–8. https://doi.org/10.1038/nature16057.
Kamaruzzaman NF, Kendall S, Good L. Focusing on the exhausting to succeed in: challenges and novel methods within the therapy of intracellular bacterial infections. Br J Pharmacol. 2017;174:2225–36. https://doi.org/10.1111/bph.13664.
Ardila CM, Granada MI, Guzmán IC. Antibiotic resistance of subgingival species in continual periodontitis sufferers. J Periodontal Res. 2010;45:557–63. https://doi.org/10.1111/j.1600-0765.2010.01274.x.
Eick S, Pfister W. Efficacy of antibiotics towards periodontopathogenic micro organism inside epithelial cells: an in vitro research. J Periodontol. 2004;75:1327–34. https://doi.org/10.1902/jop.2004.75.10.1327.
Wu S, Huang Y, Yan J, Li Y, Wang J, Yang YY, Yuan P, Ding X. Bacterial outer membrane-coated mesoporous silica nanoparticles for focused supply of antibiotic rifampicin towards gram-negative bacterial an infection in vivo. Adv Funct Mater. 2021;31:2103442. https://doi.org/10.1002/adfm.202103442.
Li Z, Clarke AJ, Beveridge TJ. Gram-negative micro organism produce membrane vesicles that are able to killing different micro organism. J Bacteriol. 1998;180:5478–83. https://doi.org/10.1128/JB.180.20.5478-5483.1998.
MacDonald KL, Beveridge TJ. Bactericidal impact of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on gram-positive micro organism. Can J Microbiol. 2002;48:810–20. https://doi.org/10.1139/w02-077.
Ofek I, Hasty DL, Sharon N. Anti-adhesion remedy of bacterial illnesses: prospects and issues. FEMS Immunol Med Microbiol. 2003;38:181–91. https://doi.org/10.1016/S0928-8244(03)00228-1.
Zhang Y, Chen Y, Lo C, Zhuang J, Angsantikul P, Zhang Q, Wei X, Zhou Z, Obonyo M, Fang RH, et al. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew Chem Int Ed Engl. 2019;58:11404–8. https://doi.org/10.1002/anie.201906280.
Nakao R, Hasegawa H, Dongying B, Ohnishi M, Senpuku H. Evaluation of outer membrane vesicles of periodontopathic bacterium Porphyromonas gingivalis as attainable mucosal immunogen. Vaccine. 2016;34:4626–34. https://doi.org/10.1016/j.vaccine.2016.06.016.
Nakao R, Hasegawa H, Ochiai Okay, Takashiba S, Ainai A, Ohnishi M, Watanabe H, Senpuku H. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS ONE. 2011;6: e26163. https://doi.org/10.1371/journal.pone.0026163.
Bai D, Nakao R, Ito A, Uematsu H, Senpuku H. Immunoreactive antigens acknowledged in serum samples from mice intranasally immunized with Porphyromonas gingivalis outer membrane vesicles. Pathog Dis. 2015;73:ftu006. https://doi.org/10.1093/femspd/ftu006.
Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, Bergese P, Wolfram J. Tangential circulate filtration for extremely environment friendly focus of extracellular vesicles from giant volumes of fluid. Cells. 2018;7:273. https://doi.org/10.3390/cells7120273.
He F, Li L, Fan R, Wang X, Chen X, Xu Y. Extracellular vesicles: an rising regenerative therapy for oral illness. Entrance Cell Dev Biol. 2021;9: 669011. https://doi.org/10.3389/fcell.2021.669011.
Maria Y, Konoshenko EA, Lekchnov AV, Laktionov PP. Isolation of extracellular vesicles: normal methodologies and newest tendencies. BioMed Res Int. 2018;2018:1–27. https://doi.org/10.1155/2018/8545347.
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Utilizing single-vesicle applied sciences to unravel the heterogeneity of extracellular vesicles. Nat Protoc. 2021;16:3163–85. https://doi.org/10.1038/s41596-021-00551-z.
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal data for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 tips. J Extracell Vesicles. 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750.
Rai A, Fang H, Claridge B, Simpson RJ, Greening DW. Proteomic dissection of enormous extracellular vesicle surfaceome unravels interactive floor platform. J Extracell Vesicles. 2021;10: e12164. https://doi.org/10.1002/jev2.12164.
Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma—contributions of platelet extracellular vesicles in plasma samples. J Extracell Vesicles. 2022;11: e12213. https://doi.org/10.1002/jev2.12213.
Xing Y, Yerneni SS, Wang W, Taylor RE, Campbell PG, Ren X. Engineering pro-angiogenic biomaterials through chemoselective extracellular vesicle immobilization. Biomaterials. 2022;281: 121357. https://doi.org/10.1016/j.biomaterials.2021.121357.
Chen Y, Huang J, Chen R, Yang L, Wang J, Liu B, Du L, Yi Y, Jia J, Xu Y, et al. Sustained launch of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair progress. Theranostics. 2020;10:1454–78. https://doi.org/10.7150/thno.39566.
Swanson WB, Zhang Z, Xiu Okay, Gong T, Eberle M, Wang Z, Ma PX. Scaffolds with managed launch of pro-mineralization exosomes to advertise craniofacial bone therapeutic with out cell transplantation. Acta Biomater. 2020;118:215–32. https://doi.org/10.1016/j.actbio.2020.09.052.
Liu A, Lin D, Zhao H, Chen L, Cai B, Lin Okay, Shen SG. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold through lyophilization for bone restore via Bmpr2/Acvr2b aggressive receptor-activated Smad pathway. Biomaterials. 2021;272: 120718. https://doi.org/10.1016/j.biomaterials.2021.120718.
Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res. 2014;93:1212–21. https://doi.org/10.1177/0022034514544301.
Vaquette C, Saifzadeh S, Farag A, Hutmacher DW, Ivanovski S. Periodontal tissue engineering with a multiphasic assemble and cell sheets. J Dent Res. 2019;98:673–81. https://doi.org/10.1177/0022034519837967.
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D’Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, et al. The ability of imaging to know extracellular vesicle biology in vivo. Nat Strategies. 2021;18:1013–26. https://doi.org/10.1038/s41592-021-01206-3.