Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise evaluate: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med. 2017;6:1940–8. https://doi.org/10.1002/sctm.17-0148.
Yamanaka S. Pluripotent stem cell-based cell remedy—promise and challenges. Cell Stem Cell. 2020;27:523–31.
Aly RM. Present state of stem cell-based therapies: an outline. Stem Cell Investig. 2020;7:8–8.
Saha Okay, Jaenisch R. Technical Challenges in Utilizing Human Induced Pluripotent Stem Cells to Mannequin Illness. Cell Stem Cell. 2009;5:584–95.
Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402:C47-52.
Lauffenburger DA. Cell signaling pathways as management modules: complexity for simplicity? Proc Natl Acad Sci. 2000;97:5031–3. https://doi.org/10.1073/pnas.97.10.5031.
Zeng Z, Miao N, Solar T. Revealing mobile and molecular complexity of the central nervous system utilizing single cell sequencing. Stem Cell Res Ther. 2018;9:234. https://doi.org/10.1186/s13287-018-0985-z.
Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug supply methods. Nat Rev Chem. 2017;1:0063.
Hook AL, Anderson DG, Langer R, Williams P, Davies MC, Alexander MR. Excessive throughput strategies utilized in biomaterial growth and discovery. Biomaterials. 2010;31:187–98. https://doi.org/10.1016/j.biomaterials.2009.09.037.
Kim HD, Lee EA, Choi YH, An YH, Koh RH, Kim SL, et al. Excessive throughput approaches for managed stem cell differentiation. Acta Biomater. 2016;34:21–9.
Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS. Excessive-throughput mobile microarray platforms: purposes in drug discovery, toxicology and stem cell analysis. Traits Biotechnol. 2009;27:342–9.
Park JW, Fu S, Huang B, Xu R-H. Various splicing in mesenchymal stem cell differentiation. Stem Cells. 2020. https://doi.org/10.1002/stem.3248.
Xia P, Wang X, Qu Y, Lin Q, Cheng Okay, Gao M, et al. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound by the integrin-mTOR signaling pathway. Stem Cell Res Ther. 2017;8:281. https://doi.org/10.1186/s13287-017-0733-9.
George S, Hamblin MR, Abrahamse H. Differentiation of mesenchymal stem cells to neuroglia: within the context of cell signalling. Stem Cell Rev Rep. 2019;15:814–26. https://doi.org/10.1007/s12015-019-09917-z.
Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G. Lab-on-a-chip applied sciences for stem cell evaluation. Traits Biotechnol. 2014;32:245–53.
Tune Y, Hormes J, Kumar CSSR. Microfluidic synthesis of nanomaterials. Small. 2008;4:698–711. https://doi.org/10.1002/smll.200701029.
Zhao X, Bian F, Solar L, Cai L, Li L, Zhao Y. Microfluidic technology of nanomaterials for biomedical purposes. Small. 2020;16:1–19.
Elvira KS, i Solvas XC, Wootton RCR, DeMello AJ. The previous, current and potential for microfluidic reactor know-how in chemical synthesis. Nat Chem. 2013;5:905–15.
Liao Z, Wang J, Zhang P, Zhang Y, Miao Y, Gao S, et al. Current advances in microfluidic chip built-in digital biosensors for multiplexed detection. Biosens Bioelectron. 2018;121:272–80.
Padash M, Enz C, Carrara S. Microfluidics by additive manufacturing for wearable biosensors: a evaluate. Sensors. 2020;20:4236.
Yang Okay, Park HJ, Han S, Lee J, Ko E, Kim J, et al. Recapitulation of in vivo-like paracrine indicators of human mesenchymal stem cells for purposeful neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials. 2015;63:177–88. https://doi.org/10.1016/j.biomaterials.2015.06.011.
Du G, Fang Q, den Toonder JMJ. Microfluidics for cell-based excessive throughput screening platforms-A evaluate. Anal Chim Acta. 2016;903:36–50. https://doi.org/10.1016/j.aca.2015.11.023.
Giridharan V, Yun Y, Hajdu P, Conforti L, Collins B, Jang Y, et al. Microfluidic platforms for analysis of nanobiomaterials: A evaluate. J Nanomater. 2012;2012:14.
Lee JM, Zhang M, Yeong W. Characterization and analysis of 3D printed microfluidic chip for cell processing. Microfluid Nanofluidics. 2016;20:1–15.
Hayes CJ, Dalton TM. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery. Biomol Detect Quantif. 2015;4:22–32. https://doi.org/10.1016/j.bdq.2015.04.003.
Bellmann J, Goswami RY, Girardo S, Rein N, Hosseinzadeh Z, Hicks MR, et al. A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials. 2019;225:119537. https://doi.org/10.1016/j.biomaterials.2019.119537.
Ko E, Tran V-Okay, Son SE, Hur W, Choi H, Seong GH. Characterization of Au@PtNP/GO nanozyme and its software to electrochemical microfluidic gadgets for quantification of hydrogen peroxide. Sensors Actuators B Chem. 2019;294:166–76.
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electrical subject modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials. 2020;226:119522. https://doi.org/10.1016/j.biomaterials.2019.119522.
Gutierrez E, Groisman A. Quantitative measurements of the energy of adhesion of human neutrophils to a substratum in a microfluidic machine. Anal Chem. 2007;79:2249–58. https://doi.org/10.1021/ac061703n.
Qin D, Xia Y, Whitesides GM. Gentle lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5:491–502.
Mohamed MGA, Kumar H, Wang Z, Martin N, Mills B, Kim Okay. Speedy and cheap fabrication of multi-depth microfluidic machine utilizing high-resolution LCD stereolithographic 3D printing. J Manuf Mater Course of. 2019;3:1–11.
Mukherjee P, Nebuloni F, Gao H, Zhou J, Papautsky I. Speedy prototyping of soppy lithography masters for microfluidic gadgets utilizing dry movie photoresist in a non-cleanroom setting. Micromachines. 2019;10:192.
Iwai Okay, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L. Finger-powered microfluidic methods utilizing multilayer smooth lithography and injection molding processes. Lab Chip. 2014;14:3790.
Nilghaz A, Guan L, Tan W, Shen W. Advances of paper-based microfluidics for diagnostics—the unique motivation and present standing. ACS Sensors. 2016;1:1382–93. https://doi.org/10.1021/acssensors.6b00578.
Moreno-Rivas O, Hernández-Velázquez D, Piazza V, Marquez S. Speedy prototyping of microfluidic gadgets by SL 3D printing and their biocompatibility examine for cell culturing. Mater At present Proc. 2019;13:436–45. https://doi.org/10.1016/j.matpr.2019.03.189.
Lee J-Y, An J, Chua CK. Fundamentals and purposes of 3D printing for novel supplies. Appl Mater At present. 2017;7:120–33.
Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, et al. 3D printed microfluidic gadgets: enablers and obstacles. Lab Chip R Soc Chem. 2016;16:1993–2013.
Vasilescu SA, Bazaz SR, Jin D, Shimoni O, Warkiani ME. 3D printing allows the speedy prototyping of modular microfluidic gadgets for particle conjugation. Appl Mater At present. 2020;20:100726. https://doi.org/10.1016/j.apmt.2020.100726.
Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Sizzling-melt extruded filaments based mostly on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509:255–63. https://doi.org/10.1016/j.ijpharm.2016.05.036.
Zhou Z, Ruiz Cantu L, Chen X, Alexander MR, Roberts CJ, Hague R, et al. Excessive-throughput characterization of fluid properties to foretell droplet ejection for three-dimensional inkjet printing formulations. Addit Manuf. 2019;29:100792. https://doi.org/10.1016/j.addma.2019.100792.
Salentijn GIJ, Oomen PE, Grajewski M, Verpoorte E. Fused deposition modeling 3D printing for (Bio)analytical machine fabrication: procedures, supplies, and purposes. Anal Chem. 2017;89:7053–61.
Hwang Y, Paydar OH, Candler RN. 3D printed molds for non-planar PDMS microfluidic channels. Sens Actuators A Phys. 2015;226:137–42. https://doi.org/10.1016/j.sna.2015.02.028.
He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A. Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluidics. 2015;19:447–56. https://doi.org/10.1007/s10404-015-1571-7.
Bressan LP, Robles-Najar J, Adamo CB, Quero RF, Costa BMC, de Jesus DP, et al. 3D-printed microfluidic machine for the synthesis of silver and gold nanoparticles. Microchem J. 2019;146:1083–9. https://doi.org/10.1016/j.microc.2019.02.043.
Tothill AM, Partridge M, James SW, Tatam RP. Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. J Micromech Microeng. 2017;27:035018.
Beauchamp MJ, Nordin GP, Woolley AT. Shifting from millifluidic to really microfluidic sub-100-μm cross-section 3D printed gadgets. Anal Bioanal Chem. 2017;409:4311–9. https://doi.org/10.1007/s00216-017-0398-3.
Kabirian F, Ditkowski B, Zamanian A, Heying R, Mozafari M. An progressive method in the direction of 3D-printed scaffolds for the subsequent technology of tissue-engineered vascular grafts. Mater At present Proc. 2018;5:15586–94.
Gautam R, Singh RD, Sharma VP, Siddhartha R, Chand P, Kumar R. Biocompatibility of polymethylmethacrylate resins utilized in dentistry. J Biomed Mater Res Half B Appl Biomater. 2012;100B:1444–50. https://doi.org/10.1002/jbm.b.32673.
Lye KW, Tideman H, Wolke JCG, Merkx MAW, Chin FKC, Jansen JA. Biocompatibility and bone formation with porous modified PMMA in regular and irradiated mandibular tissue. Clin Oral Implants Res. 2013;24:100–9. https://doi.org/10.1111/j.1600-0501.2011.02388.x.
Chen Y, Zhang L, Chen G. Fabrication, modification, and software of poly(methyl methacrylate) microfluidic chips. Electrophoresis. 2008;29:1801–14. https://doi.org/10.1002/elps.200700552.
Hermanson NJ, Crittenden PA, Novak LR, Woods RA. Chemical resistance of polycarbonate. Amsterdam: Elsevier; 1998. p. 117–22.
Shamim N, Koh YP, Simon SL, McKenna GB. Glass transition temperature of skinny polycarbonate movies measured by flash differential scanning calorimetry. J Polym Sci Half B Polym Phys. 2014;52:1462–8. https://doi.org/10.1002/polb.23583.
Ongaro AE, Di Giuseppe D, Kermanizadeh A, Miguelez Crespo A, Mencattini A, Ghibelli L, et al. Polylactic is a sustainable, low absorption, low autofluorescence various to different plastics for microfluidic and organ-on-chip purposes. Anal Chem. 2020;92:6693–701. https://doi.org/10.1021/acs.analchem.0c00651.
Sochol RD, Candy E, Glick CC, Wu S-Y, Yang C, Restaino M, et al. 3D printed microfluidics and microelectronics. Microelectron Eng. 2018;189:52–68.
Sibeko MA, Saladino ML, Luyt AS, Caponetti E. Morphology and properties of poly(methyl methacrylate) (PMMA) stuffed with mesoporous silica (MCM-41) ready by soften compounding. J Mater Sci. 2016;51:3957–70. https://doi.org/10.1007/s10853-015-9714-5.
Yavuz C, Oliaei SNB, Cetin B, Yesil-Celiktas O. Sterilization of PMMA microfluidic chips by numerous methods and investigation of fabric traits. J Supercrit Fluids. 2016;107:114–21.
Ali U, Karim KJBA, Buang NA. A evaluate of the properties and purposes of poly (methyl methacrylate) (PMMA). Polym Rev. 2015;55:678–705. https://doi.org/10.1080/15583724.2015.1031377.
Trotta G, Volpe A, Ancona A, Fassi I. Versatile micro manufacturing platform for the fabrication of PMMA microfluidic gadgets. J Manuf Course of. 2018;35:107–17.
Tomazelli Coltro WK, Cheng CM, Carrilho E, de Jesus DP. Current advances in low-cost microfluidic platforms for diagnostic purposes. Electrophoresis. 2014;35:2309–24. https://doi.org/10.1002/elps.201400006.
Guo J, Yu Y, Cai L, Wang Y, Shi Okay, Shang L, et al. Microfluidics for versatile electronics. Mater At present. 2021. https://doi.org/10.1016/j.mattod.2020.08.017.
Sabourin D, Petersen J, Snakenborg D, Brivio M, Gudnadson H, Wolff A, et al. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication by way of simultaneous DNA immobilization and bonding activation by transient UV publicity. Biomed Microdevices. 2010;12:673–81. https://doi.org/10.1007/s10544-010-9420-7.
Battle KN, Jackson JM, Witek MA, Hupert ML, Hunsucker SA, Armistead PM, et al. Stable-phase extraction and purification of membrane proteins utilizing a UV-modified PMMA microfluidic bioaffinity μSPE machine. Analyst. 2014;139:1355–63.
Wongkaew N, He P, Kurth V, Surareungchai W, Baeumner AJ. Multi-channel PMMA microfluidic biosensor with built-in IDUAs for electrochemical detection. Anal Bioanal Chem. 2013;405:5965–74. https://doi.org/10.1007/s00216-013-7020-0.
Yeh CH, Zhao Q, Lee SJ, Lin YC. Utilizing a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles. Sens Actuators A Phys. 2009;151:231–6.
Su S, Jing G, Zhang M, Liu B, Zhu X, Wang B, et al. One-step bonding and hydrophobic floor modification technique for speedy fabrication of polycarbonate-based droplet microfluidic chips. Sens Actuators B Chem. 2019;282:60–8.
Jia Y, Asahara H, Hsu Y-I, Asoh T-A, Uyama H. Floor modification of polycarbonate utilizing the light-activated chlorine dioxide radical. Appl Surf Sci. 2020;530:147202.
Wang Y, He Q, Dong Y, Chen H. In-channel modification of biosensor electrodes built-in on a polycarbonate microfluidic chip for micro flow-injection amperometric dedication of glucose. Sens Actuators B Chem. 2010;145:553–60.
Ogończyk D, Węgrzyn J, Jankowski P, Dąbrowski B, Garstecki P. Bonding of microfluidic gadgets fabricated in polycarbonate. Lab Chip. 2010;10:1324.
Romanov V, Samuel R, Chaharlang M, Jafek AR, Frost A, Gale BK. FDM 3D printing of high-pressure, heat-resistant, clear microfluidic gadgets. Anal Chem. 2018;90:10450–6.
Guo T, Holzberg TR, Lim CG, Gao F, Gargava A, Trachtenberg JE, et al. 3D printing PLGA: a quantitative examination of the consequences of polymer composition and printing parameters on print decision. Biofabrication. 2017;9:024101.
Wang L, Kodzius R, Yi X, Li S, Hui YS, Wen W. Prototyping chips in minutes: direct laser plotting (DLP) of purposeful microfluidic buildings. Sens Actuators B Chem. 2012;168:214–22. https://doi.org/10.1016/j.snb.2012.04.011.
Macdonald NP, Zhu F, Corridor CJ, Reboud J, Crosier PS, Patton EE, et al. Evaluation of biocompatibility of 3D printed photopolymers utilizing zebrafish embryo toxicity assays. Lab Chip. 2016;16:291–7.
Piironen Okay, Haapala M, Talman V, Järvinen P, Sikanen T. Cell adhesion and proliferation on frequent 3D printing supplies utilized in stereolithography of microfluidic gadgets. Lab Chip. 2020;20:2372–82.
Correa H, Aristizabal F, Duque C, Kerr R. Cytotoxic and antimicrobial exercise of pseudopterosins and seco-pseudopterosins remoted from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia islands (Southwest Caribbean Sea). Mar Medication. 2011;9:334–44.
Ultimaker. Ultimaker 3 guide (En) v1.4. p. 1–60. 2017. https://ultimaker.com/en/merchandise/ultimaker-3. Accessed 28 Jan 2021.
Park SJ, Lee JE, Lee HB, Park J, Lee N-Okay, Son Y, et al. 3D printing of bio-based polycarbonate and its potential purposes in ecofriendly indoor manufacturing. Addit Manuf. 2020;31:100974.
Stone HA. Introduction to fluid dynamics for microfluidic flows. In: Lee H, Westervelt RM, Ham D (eds) CMOS Biotechnology. Sequence on Built-in Circuits and Techniques. Springer, Boston, MA. 2007. https://doi.org/10.1007/978-0-387-68913-5_2.
Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D. Evaluation of the biocompatibility of three-dimensional-printed polymers utilizing multispecies toxicity checks. Biomicrofluidics. 2015;9:061103. https://doi.org/10.1063/1.4939031.
Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, et al. Spatially and optically tailor-made 3D printing for extremely miniaturized and built-in microfluidics. Nat Commun. 2021;12:5509.
Lee SJ, Choi JS, Park KS, Khang G, Lee YM, Lee HB. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with completely different micropore sizes. Biomaterials. 2004;25:4699–707.
Li RY, Liu ZG, Liu HQ, Chen L, Liu JF, Pan YH. Analysis of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) movies. Am J Transl Res. 2015;7:1357–70.
da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic methods. Chem Eng J. 2018;340:9–14. https://doi.org/10.1016/j.cej.2018.01.010.
Joz Majidi H, Babaei A, Kazemi-Pasarvi S, Arab-Bafrani Z, Amiri M. Tuning polylactic acid scaffolds for tissue engineering functions by incorporating graphene oxide-chitosan nano-hybrids. Polym Adv Technol. 2021;32:1654–66.
Lim KT, Hexiu J, Kim J, Seonwoo H, Choung P-H, Chung JH. Synergistic results of orbital shear stress on in vitro progress and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells. Biomed Res Int. 2014;2014:1–18.
Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep. 2010;8:98–104. https://doi.org/10.1007/s11914-010-0015-2.
Bjerre L, Bünger CE, Kassem M, Mygind T. Movement perfusion tradition of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials. 2008;29:2616–27.
Stiehler M, Bünger C, Baatrup A, Lind M, Kassem M, Mygind T. Impact of dynamic 3-D tradition on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res Half A. 2008. https://doi.org/10.1002/jbm.a.31967.
Babaliari E, Petekidis G, Chatzinikolaidou M. A exactly flow-controlled microfluidic system for enhanced pre-osteoblastic cell response for bone tissue engineering. Bioengineering. 2018;5:66.
Hong D, Chen HX, Xue Y, Li DM, Wan XC, Ge R, et al. Osteoblastogenic results of dexamethasone by upregulation of TAZ expression in rat mesenchymal stem cells. J Steroid Biochem Mol Biol. 2009;116:86–92.
Langenbach F, Handschel J. Results of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4:1.