Wednesday, December 28, 2022
HomeNanotechnologyDirect 3D printed biocompatible microfluidics: evaluation of human mesenchymal stem cell differentiation...

Direct 3D printed biocompatible microfluidics: evaluation of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic tradition system | Journal of Nanobiotechnology


  • Leberfinger AN, Ravnic DJ, Dhawan A, Ozbolat IT. Concise evaluate: bioprinting of stem cells for transplantable tissue fabrication. Stem Cells Transl Med. 2017;6:1940–8. https://doi.org/10.1002/sctm.17-0148.

    Article 

    Google Scholar
     

  • Yamanaka S. Pluripotent stem cell-based cell remedy—promise and challenges. Cell Stem Cell. 2020;27:523–31.

    Article 
    CAS 

    Google Scholar
     

  • Aly RM. Present state of stem cell-based therapies: an outline. Stem Cell Investig. 2020;7:8–8.

    Article 
    CAS 

    Google Scholar
     

  • Saha Okay, Jaenisch R. Technical Challenges in Utilizing Human Induced Pluripotent Stem Cells to Mannequin Illness. Cell Stem Cell. 2009;5:584–95.

    Article 
    CAS 

    Google Scholar
     

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402:C47-52.

    Article 
    CAS 

    Google Scholar
     

  • Lauffenburger DA. Cell signaling pathways as management modules: complexity for simplicity? Proc Natl Acad Sci. 2000;97:5031–3. https://doi.org/10.1073/pnas.97.10.5031.

    Article 
    CAS 

    Google Scholar
     

  • Zeng Z, Miao N, Solar T. Revealing mobile and molecular complexity of the central nervous system utilizing single cell sequencing. Stem Cell Res Ther. 2018;9:234. https://doi.org/10.1186/s13287-018-0985-z.

    Article 
    CAS 

    Google Scholar
     

  • Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug supply methods. Nat Rev Chem. 2017;1:0063.

    Article 
    CAS 

    Google Scholar
     

  • Hook AL, Anderson DG, Langer R, Williams P, Davies MC, Alexander MR. Excessive throughput strategies utilized in biomaterial growth and discovery. Biomaterials. 2010;31:187–98. https://doi.org/10.1016/j.biomaterials.2009.09.037.

    Article 
    CAS 

    Google Scholar
     

  • Kim HD, Lee EA, Choi YH, An YH, Koh RH, Kim SL, et al. Excessive throughput approaches for managed stem cell differentiation. Acta Biomater. 2016;34:21–9.

    Article 
    CAS 

    Google Scholar
     

  • Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS. Excessive-throughput mobile microarray platforms: purposes in drug discovery, toxicology and stem cell analysis. Traits Biotechnol. 2009;27:342–9.

    Article 
    CAS 

    Google Scholar
     

  • Park JW, Fu S, Huang B, Xu R-H. Various splicing in mesenchymal stem cell differentiation. Stem Cells. 2020. https://doi.org/10.1002/stem.3248.

    Article 

    Google Scholar
     

  • Xia P, Wang X, Qu Y, Lin Q, Cheng Okay, Gao M, et al. TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound by the integrin-mTOR signaling pathway. Stem Cell Res Ther. 2017;8:281. https://doi.org/10.1186/s13287-017-0733-9.

    Article 
    CAS 

    Google Scholar
     

  • George S, Hamblin MR, Abrahamse H. Differentiation of mesenchymal stem cells to neuroglia: within the context of cell signalling. Stem Cell Rev Rep. 2019;15:814–26. https://doi.org/10.1007/s12015-019-09917-z.

    Article 
    CAS 

    Google Scholar
     

  • Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G. Lab-on-a-chip applied sciences for stem cell evaluation. Traits Biotechnol. 2014;32:245–53.

    Article 
    CAS 

    Google Scholar
     

  • Tune Y, Hormes J, Kumar CSSR. Microfluidic synthesis of nanomaterials. Small. 2008;4:698–711. https://doi.org/10.1002/smll.200701029.

    Article 
    CAS 

    Google Scholar
     

  • Zhao X, Bian F, Solar L, Cai L, Li L, Zhao Y. Microfluidic technology of nanomaterials for biomedical purposes. Small. 2020;16:1–19.


    Google Scholar
     

  • Elvira KS, i Solvas XC, Wootton RCR, DeMello AJ. The previous, current and potential for microfluidic reactor know-how in chemical synthesis. Nat Chem. 2013;5:905–15.

    Article 
    CAS 

    Google Scholar
     

  • Liao Z, Wang J, Zhang P, Zhang Y, Miao Y, Gao S, et al. Current advances in microfluidic chip built-in digital biosensors for multiplexed detection. Biosens Bioelectron. 2018;121:272–80.

    Article 
    CAS 

    Google Scholar
     

  • Padash M, Enz C, Carrara S. Microfluidics by additive manufacturing for wearable biosensors: a evaluate. Sensors. 2020;20:4236.

    Article 
    CAS 

    Google Scholar
     

  • Yang Okay, Park HJ, Han S, Lee J, Ko E, Kim J, et al. Recapitulation of in vivo-like paracrine indicators of human mesenchymal stem cells for purposeful neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials. 2015;63:177–88. https://doi.org/10.1016/j.biomaterials.2015.06.011.

    Article 
    CAS 

    Google Scholar
     

  • Du G, Fang Q, den Toonder JMJ. Microfluidics for cell-based excessive throughput screening platforms-A evaluate. Anal Chim Acta. 2016;903:36–50. https://doi.org/10.1016/j.aca.2015.11.023.

    Article 
    CAS 

    Google Scholar
     

  • Giridharan V, Yun Y, Hajdu P, Conforti L, Collins B, Jang Y, et al. Microfluidic platforms for analysis of nanobiomaterials: A evaluate. J Nanomater. 2012;2012:14.

    Article 

    Google Scholar
     

  • Lee JM, Zhang M, Yeong W. Characterization and analysis of 3D printed microfluidic chip for cell processing. Microfluid Nanofluidics. 2016;20:1–15.

    Article 

    Google Scholar
     

  • Hayes CJ, Dalton TM. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery. Biomol Detect Quantif. 2015;4:22–32. https://doi.org/10.1016/j.bdq.2015.04.003.

    Article 
    CAS 

    Google Scholar
     

  • Bellmann J, Goswami RY, Girardo S, Rein N, Hosseinzadeh Z, Hicks MR, et al. A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials. 2019;225:119537. https://doi.org/10.1016/j.biomaterials.2019.119537.

    Article 
    CAS 

    Google Scholar
     

  • Ko E, Tran V-Okay, Son SE, Hur W, Choi H, Seong GH. Characterization of Au@PtNP/GO nanozyme and its software to electrochemical microfluidic gadgets for quantification of hydrogen peroxide. Sensors Actuators B Chem. 2019;294:166–76.

    Article 
    CAS 

    Google Scholar
     

  • Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electrical subject modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials. 2020;226:119522. https://doi.org/10.1016/j.biomaterials.2019.119522.

    Article 
    CAS 

    Google Scholar
     

  • Gutierrez E, Groisman A. Quantitative measurements of the energy of adhesion of human neutrophils to a substratum in a microfluidic machine. Anal Chem. 2007;79:2249–58. https://doi.org/10.1021/ac061703n.

    Article 
    CAS 

    Google Scholar
     

  • Qin D, Xia Y, Whitesides GM. Gentle lithography for micro- and nanoscale patterning. Nat Protoc. 2010;5:491–502.

    Article 
    CAS 

    Google Scholar
     

  • Mohamed MGA, Kumar H, Wang Z, Martin N, Mills B, Kim Okay. Speedy and cheap fabrication of multi-depth microfluidic machine utilizing high-resolution LCD stereolithographic 3D printing. J Manuf Mater Course of. 2019;3:1–11.

    CAS 

    Google Scholar
     

  • Mukherjee P, Nebuloni F, Gao H, Zhou J, Papautsky I. Speedy prototyping of soppy lithography masters for microfluidic gadgets utilizing dry movie photoresist in a non-cleanroom setting. Micromachines. 2019;10:192.

    Article 

    Google Scholar
     

  • Iwai Okay, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L. Finger-powered microfluidic methods utilizing multilayer smooth lithography and injection molding processes. Lab Chip. 2014;14:3790.

    Article 
    CAS 

    Google Scholar
     

  • Nilghaz A, Guan L, Tan W, Shen W. Advances of paper-based microfluidics for diagnostics—the unique motivation and present standing. ACS Sensors. 2016;1:1382–93. https://doi.org/10.1021/acssensors.6b00578.

    Article 
    CAS 

    Google Scholar
     

  • Moreno-Rivas O, Hernández-Velázquez D, Piazza V, Marquez S. Speedy prototyping of microfluidic gadgets by SL 3D printing and their biocompatibility examine for cell culturing. Mater At present Proc. 2019;13:436–45. https://doi.org/10.1016/j.matpr.2019.03.189.

    Article 
    CAS 

    Google Scholar
     

  • Lee J-Y, An J, Chua CK. Fundamentals and purposes of 3D printing for novel supplies. Appl Mater At present. 2017;7:120–33.

    Article 

    Google Scholar
     

  • Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, et al. 3D printed microfluidic gadgets: enablers and obstacles. Lab Chip R Soc Chem. 2016;16:1993–2013.

    Article 
    CAS 

    Google Scholar
     

  • Vasilescu SA, Bazaz SR, Jin D, Shimoni O, Warkiani ME. 3D printing allows the speedy prototyping of modular microfluidic gadgets for particle conjugation. Appl Mater At present. 2020;20:100726. https://doi.org/10.1016/j.apmt.2020.100726.

    Article 

    Google Scholar
     

  • Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Sizzling-melt extruded filaments based mostly on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509:255–63. https://doi.org/10.1016/j.ijpharm.2016.05.036.

    Article 
    CAS 

    Google Scholar
     

  • Zhou Z, Ruiz Cantu L, Chen X, Alexander MR, Roberts CJ, Hague R, et al. Excessive-throughput characterization of fluid properties to foretell droplet ejection for three-dimensional inkjet printing formulations. Addit Manuf. 2019;29:100792. https://doi.org/10.1016/j.addma.2019.100792.

    Article 
    CAS 

    Google Scholar
     

  • Salentijn GIJ, Oomen PE, Grajewski M, Verpoorte E. Fused deposition modeling 3D printing for (Bio)analytical machine fabrication: procedures, supplies, and purposes. Anal Chem. 2017;89:7053–61.

    Article 
    CAS 

    Google Scholar
     

  • Hwang Y, Paydar OH, Candler RN. 3D printed molds for non-planar PDMS microfluidic channels. Sens Actuators A Phys. 2015;226:137–42. https://doi.org/10.1016/j.sna.2015.02.028.

    Article 
    CAS 

    Google Scholar
     

  • He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A. Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluidics. 2015;19:447–56. https://doi.org/10.1007/s10404-015-1571-7.

    Article 
    CAS 

    Google Scholar
     

  • Bressan LP, Robles-Najar J, Adamo CB, Quero RF, Costa BMC, de Jesus DP, et al. 3D-printed microfluidic machine for the synthesis of silver and gold nanoparticles. Microchem J. 2019;146:1083–9. https://doi.org/10.1016/j.microc.2019.02.043.

    Article 
    CAS 

    Google Scholar
     

  • Tothill AM, Partridge M, James SW, Tatam RP. Fabrication and optimisation of a fused filament 3D-printed microfluidic platform. J Micromech Microeng. 2017;27:035018.

    Article 

    Google Scholar
     

  • Beauchamp MJ, Nordin GP, Woolley AT. Shifting from millifluidic to really microfluidic sub-100-μm cross-section 3D printed gadgets. Anal Bioanal Chem. 2017;409:4311–9. https://doi.org/10.1007/s00216-017-0398-3.

    Article 
    CAS 

    Google Scholar
     

  • Kabirian F, Ditkowski B, Zamanian A, Heying R, Mozafari M. An progressive method in the direction of 3D-printed scaffolds for the subsequent technology of tissue-engineered vascular grafts. Mater At present Proc. 2018;5:15586–94.

    Article 
    CAS 

    Google Scholar
     

  • Gautam R, Singh RD, Sharma VP, Siddhartha R, Chand P, Kumar R. Biocompatibility of polymethylmethacrylate resins utilized in dentistry. J Biomed Mater Res Half B Appl Biomater. 2012;100B:1444–50. https://doi.org/10.1002/jbm.b.32673.

    Article 
    CAS 

    Google Scholar
     

  • Lye KW, Tideman H, Wolke JCG, Merkx MAW, Chin FKC, Jansen JA. Biocompatibility and bone formation with porous modified PMMA in regular and irradiated mandibular tissue. Clin Oral Implants Res. 2013;24:100–9. https://doi.org/10.1111/j.1600-0501.2011.02388.x.

    Article 

    Google Scholar
     

  • Chen Y, Zhang L, Chen G. Fabrication, modification, and software of poly(methyl methacrylate) microfluidic chips. Electrophoresis. 2008;29:1801–14. https://doi.org/10.1002/elps.200700552.

    Article 
    CAS 

    Google Scholar
     

  • Hermanson NJ, Crittenden PA, Novak LR, Woods RA. Chemical resistance of polycarbonate. Amsterdam: Elsevier; 1998. p. 117–22.


    Google Scholar
     

  • Shamim N, Koh YP, Simon SL, McKenna GB. Glass transition temperature of skinny polycarbonate movies measured by flash differential scanning calorimetry. J Polym Sci Half B Polym Phys. 2014;52:1462–8. https://doi.org/10.1002/polb.23583.

    Article 
    CAS 

    Google Scholar
     

  • Ongaro AE, Di Giuseppe D, Kermanizadeh A, Miguelez Crespo A, Mencattini A, Ghibelli L, et al. Polylactic is a sustainable, low absorption, low autofluorescence various to different plastics for microfluidic and organ-on-chip purposes. Anal Chem. 2020;92:6693–701. https://doi.org/10.1021/acs.analchem.0c00651.

    Article 
    CAS 

    Google Scholar
     

  • Sochol RD, Candy E, Glick CC, Wu S-Y, Yang C, Restaino M, et al. 3D printed microfluidics and microelectronics. Microelectron Eng. 2018;189:52–68.

    Article 
    CAS 

    Google Scholar
     

  • Sibeko MA, Saladino ML, Luyt AS, Caponetti E. Morphology and properties of poly(methyl methacrylate) (PMMA) stuffed with mesoporous silica (MCM-41) ready by soften compounding. J Mater Sci. 2016;51:3957–70. https://doi.org/10.1007/s10853-015-9714-5.

    Article 
    CAS 

    Google Scholar
     

  • Yavuz C, Oliaei SNB, Cetin B, Yesil-Celiktas O. Sterilization of PMMA microfluidic chips by numerous methods and investigation of fabric traits. J Supercrit Fluids. 2016;107:114–21.

    Article 
    CAS 

    Google Scholar
     

  • Ali U, Karim KJBA, Buang NA. A evaluate of the properties and purposes of poly (methyl methacrylate) (PMMA). Polym Rev. 2015;55:678–705. https://doi.org/10.1080/15583724.2015.1031377.

    Article 
    CAS 

    Google Scholar
     

  • Trotta G, Volpe A, Ancona A, Fassi I. Versatile micro manufacturing platform for the fabrication of PMMA microfluidic gadgets. J Manuf Course of. 2018;35:107–17.

    Article 

    Google Scholar
     

  • Tomazelli Coltro WK, Cheng CM, Carrilho E, de Jesus DP. Current advances in low-cost microfluidic platforms for diagnostic purposes. Electrophoresis. 2014;35:2309–24. https://doi.org/10.1002/elps.201400006.

    Article 
    CAS 

    Google Scholar
     

  • Guo J, Yu Y, Cai L, Wang Y, Shi Okay, Shang L, et al. Microfluidics for versatile electronics. Mater At present. 2021. https://doi.org/10.1016/j.mattod.2020.08.017.

    Article 

    Google Scholar
     

  • Sabourin D, Petersen J, Snakenborg D, Brivio M, Gudnadson H, Wolff A, et al. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication by way of simultaneous DNA immobilization and bonding activation by transient UV publicity. Biomed Microdevices. 2010;12:673–81. https://doi.org/10.1007/s10544-010-9420-7.

    Article 
    CAS 

    Google Scholar
     

  • Battle KN, Jackson JM, Witek MA, Hupert ML, Hunsucker SA, Armistead PM, et al. Stable-phase extraction and purification of membrane proteins utilizing a UV-modified PMMA microfluidic bioaffinity μSPE machine. Analyst. 2014;139:1355–63.

    Article 
    CAS 

    Google Scholar
     

  • Wongkaew N, He P, Kurth V, Surareungchai W, Baeumner AJ. Multi-channel PMMA microfluidic biosensor with built-in IDUAs for electrochemical detection. Anal Bioanal Chem. 2013;405:5965–74. https://doi.org/10.1007/s00216-013-7020-0.

    Article 
    CAS 

    Google Scholar
     

  • Yeh CH, Zhao Q, Lee SJ, Lin YC. Utilizing a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles. Sens Actuators A Phys. 2009;151:231–6.

    Article 
    CAS 

    Google Scholar
     

  • Su S, Jing G, Zhang M, Liu B, Zhu X, Wang B, et al. One-step bonding and hydrophobic floor modification technique for speedy fabrication of polycarbonate-based droplet microfluidic chips. Sens Actuators B Chem. 2019;282:60–8.

    Article 
    CAS 

    Google Scholar
     

  • Jia Y, Asahara H, Hsu Y-I, Asoh T-A, Uyama H. Floor modification of polycarbonate utilizing the light-activated chlorine dioxide radical. Appl Surf Sci. 2020;530:147202.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, He Q, Dong Y, Chen H. In-channel modification of biosensor electrodes built-in on a polycarbonate microfluidic chip for micro flow-injection amperometric dedication of glucose. Sens Actuators B Chem. 2010;145:553–60.

    Article 
    CAS 

    Google Scholar
     

  • Ogończyk D, Węgrzyn J, Jankowski P, Dąbrowski B, Garstecki P. Bonding of microfluidic gadgets fabricated in polycarbonate. Lab Chip. 2010;10:1324.

    Article 

    Google Scholar
     

  • Romanov V, Samuel R, Chaharlang M, Jafek AR, Frost A, Gale BK. FDM 3D printing of high-pressure, heat-resistant, clear microfluidic gadgets. Anal Chem. 2018;90:10450–6.

    Article 
    CAS 

    Google Scholar
     

  • Guo T, Holzberg TR, Lim CG, Gao F, Gargava A, Trachtenberg JE, et al. 3D printing PLGA: a quantitative examination of the consequences of polymer composition and printing parameters on print decision. Biofabrication. 2017;9:024101.

    Article 

    Google Scholar
     

  • Wang L, Kodzius R, Yi X, Li S, Hui YS, Wen W. Prototyping chips in minutes: direct laser plotting (DLP) of purposeful microfluidic buildings. Sens Actuators B Chem. 2012;168:214–22. https://doi.org/10.1016/j.snb.2012.04.011.

    Article 
    CAS 

    Google Scholar
     

  • Macdonald NP, Zhu F, Corridor CJ, Reboud J, Crosier PS, Patton EE, et al. Evaluation of biocompatibility of 3D printed photopolymers utilizing zebrafish embryo toxicity assays. Lab Chip. 2016;16:291–7.

    Article 
    CAS 

    Google Scholar
     

  • Piironen Okay, Haapala M, Talman V, Järvinen P, Sikanen T. Cell adhesion and proliferation on frequent 3D printing supplies utilized in stereolithography of microfluidic gadgets. Lab Chip. 2020;20:2372–82.

    Article 
    CAS 

    Google Scholar
     

  • Correa H, Aristizabal F, Duque C, Kerr R. Cytotoxic and antimicrobial exercise of pseudopterosins and seco-pseudopterosins remoted from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia islands (Southwest Caribbean Sea). Mar Medication. 2011;9:334–44.

    Article 
    CAS 

    Google Scholar
     

  • Ultimaker. Ultimaker 3 guide (En) v1.4. p. 1–60. 2017. https://ultimaker.com/en/merchandise/ultimaker-3. Accessed 28 Jan 2021.

  • Park SJ, Lee JE, Lee HB, Park J, Lee N-Okay, Son Y, et al. 3D printing of bio-based polycarbonate and its potential purposes in ecofriendly indoor manufacturing. Addit Manuf. 2020;31:100974.

    CAS 

    Google Scholar
     

  • Stone HA. Introduction to fluid dynamics for microfluidic flows. In: Lee H, Westervelt RM, Ham D (eds) CMOS Biotechnology. Sequence on Built-in Circuits and Techniques. Springer, Boston, MA. 2007. https://doi.org/10.1007/978-0-387-68913-5_2.

  • Zhu F, Friedrich T, Nugegoda D, Kaslin J, Wlodkowic D. Evaluation of the biocompatibility of three-dimensional-printed polymers utilizing multispecies toxicity checks. Biomicrofluidics. 2015;9:061103. https://doi.org/10.1063/1.4939031.

    Article 
    CAS 

    Google Scholar
     

  • Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, et al. Spatially and optically tailor-made 3D printing for extremely miniaturized and built-in microfluidics. Nat Commun. 2021;12:5509.

    Article 
    CAS 

    Google Scholar
     

  • Lee SJ, Choi JS, Park KS, Khang G, Lee YM, Lee HB. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with completely different micropore sizes. Biomaterials. 2004;25:4699–707.

    Article 
    CAS 

    Google Scholar
     

  • Li RY, Liu ZG, Liu HQ, Chen L, Liu JF, Pan YH. Analysis of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) movies. Am J Transl Res. 2015;7:1357–70.

    CAS 

    Google Scholar
     

  • da Silva D, Kaduri M, Poley M, Adir O, Krinsky N, Shainsky-Roitman J, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic methods. Chem Eng J. 2018;340:9–14. https://doi.org/10.1016/j.cej.2018.01.010.

    Article 
    CAS 

    Google Scholar
     

  • Joz Majidi H, Babaei A, Kazemi-Pasarvi S, Arab-Bafrani Z, Amiri M. Tuning polylactic acid scaffolds for tissue engineering functions by incorporating graphene oxide-chitosan nano-hybrids. Polym Adv Technol. 2021;32:1654–66.

    Article 
    CAS 

    Google Scholar
     

  • Lim KT, Hexiu J, Kim J, Seonwoo H, Choung P-H, Chung JH. Synergistic results of orbital shear stress on in vitro progress and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells. Biomed Res Int. 2014;2014:1–18.


    Google Scholar
     

  • Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep. 2010;8:98–104. https://doi.org/10.1007/s11914-010-0015-2.

    Article 

    Google Scholar
     

  • Bjerre L, Bünger CE, Kassem M, Mygind T. Movement perfusion tradition of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials. 2008;29:2616–27.

    Article 
    CAS 

    Google Scholar
     

  • Stiehler M, Bünger C, Baatrup A, Lind M, Kassem M, Mygind T. Impact of dynamic 3-D tradition on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res Half A. 2008. https://doi.org/10.1002/jbm.a.31967.

    Article 

    Google Scholar
     

  • Babaliari E, Petekidis G, Chatzinikolaidou M. A exactly flow-controlled microfluidic system for enhanced pre-osteoblastic cell response for bone tissue engineering. Bioengineering. 2018;5:66.

    Article 
    CAS 

    Google Scholar
     

  • Hong D, Chen HX, Xue Y, Li DM, Wan XC, Ge R, et al. Osteoblastogenic results of dexamethasone by upregulation of TAZ expression in rat mesenchymal stem cells. J Steroid Biochem Mol Biol. 2009;116:86–92.

    Article 
    CAS 

    Google Scholar
     

  • Langenbach F, Handschel J. Results of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4:1.

    Article 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments