Tuesday, December 27, 2022
HomeNanotechnologyMulti-micron crisscross constructions grown from DNA-origami slats

Multi-micron crisscross constructions grown from DNA-origami slats


  • Rothemund, P. W. Ok. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Andersen, E. S. et al. Self-assembly of a nanoscale DNA field with a controllable lid. Nature 459, 73–76 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Benson, E. et al. DNA rendering of polyhedral meshes on the nanoscale. Nature 523, 441–444 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Han, D. et al. DNA origami with complicated curvatures in three-dimensional house. Science 332, 342–346 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Han, D. et al. DNA gridiron nanostructures based mostly on four-arm junctions. Science 339, 1412–1415 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Marchi, A. N., Saaem, I., Vogen, B. N., Brown, S. & LaBean, T. H. Towards bigger DNA origami. Nano Lett. 14, 5740–5747 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nickels, P. C. et al. DNA origami constructions straight assembled from intact bacteriophages. Small 10, 1765–1769 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem. Commun. 48, 6405–6407 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wei, B., Dai, M. & Yin, P. Complicated shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ke, Y. et al. DNA brick crystals with prescribed depths. Nat. Chem. 6, 994–1002 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 distinctive elements. Nature 552, 72–77 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional constructions self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Pfeifer, W. & Saccà, B. From nano to macro via hierarchical self-assembly: the DNA paradigm. ChemBioChem 17, 1063–1080 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Z., Liu, Y. & Yan, H. Organizing DNA origami tiles into bigger constructions utilizing preformed scaffold frames. Nano Lett. 11, 2997–3002 (2011).

  • Wagenbauer, Ok. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gerling, T., Wagenbauer, Ok. F., Neuner, A. M. & Dietz, H. Dynamic DNA gadgets and assemblies shaped by shape-complementary, non-base pairing 3D elements. Science 347, 1446–1452 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rajendran, A., Endo, M., Katsuda, Y., Hidaka, Ok. & Sugiyama, H. Programmed two-dimensional self-assembly of a number of DNA origami jigsaw items. ACS Nano 5, 665–671 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liu, W., Zhong, H., Wang, R. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Woo, S. & Rothemund, P. W. Ok. Programmable molecular recognition based mostly on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sigl, C. et al. Programmable icosahedral shell system for virus trapping. Nat. Mater. 20, 1281–1289 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yao, G. et al. Meta-DNA constructions. Nat. Chem. 12, 1067–1075 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Berengut, J. F. et al. Self-limiting polymerization of DNA origami subunits with pressure accumulation. ACS Nano 14, 17428–17441 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wickham, S. F. et al. Complicated multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nat. Commun. 11, 1–10 (2020).

    Article 

    Google Scholar
     

  • Tikhomirov, G., Petersen, P. & Qian, L. Fractal meeting of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Minev, D., Wintersinger, C. M., Ershova, A. & Shih, W. M. Sturdy nucleation management through crisscross polymerization of extremely coordinated DNA slats. Nat. Commun. 12, 1741 (2021).

    Article 

    Google Scholar
     

  • Seeman, N. C. Nanomaterials based mostly on DNA. Annu. Rev. Biochem. 79, 65 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailor-made optical response. Nature 483, 311–314 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Acuna, G. P. et al. Fluorescence enhancement at docking websites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for focused transport of molecular payloads. Science 335, 831–834 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. A DNA nanorobot features as a most cancers therapeutic in response to a molecular set off in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 14, 184–190 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Derr, N. D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Douglas, S. M., Chou, J. J. & Shih, W. M. DNA-nanotube-induced alignment of membrane proteins for NMR construction willpower. In Proc. Natl. Acad. Sci. USA 104, 6644–6648 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Strauss, M. T., Schueder, F., Haas, D., Nickels, P. C. & Jungmann, R. Quantifying absolute addressability in DNA origami with molecular decision. Nat. Commun. 9, 1600 (2018).

    Article 

    Google Scholar
     

  • Scheible, M. B. et al. A compact DNA dice with facet size 10 nm. Small 11, 5200–5205 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, D. Y. & Winfree, E. Management of DNA strand displacement kinetics utilizing toehold alternate. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Bruetzel, L. Ok., Walker, P. U., Gerling, T., Dietz, H. & Lipfert, J. Time-resolved small-angle X-ray scattering reveals millisecond transitions of a DNA origami swap. Nano Lett. 18, 2672–2676 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. 3D DNA origami crystals. Adv. Mater. 30, 1800273 (2018).

    Article 

    Google Scholar
     

  • Zheng, J. et al. From molecular to macroscopic through the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Tikhomirov, G., Petersen, P. & Qian, L. Triangular DNA origami tilings. J. Am. Chem. Soc. 140, 17361–17364 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rothemund, P. W. Ok., Papadakis, N. & Winfree, E. Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004).

    Article 

    Google Scholar
     

  • Barish, R. D., Schulman, R., Rothemund, P. W. Ok. & Winfree, E. An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl Acad. Sci. USA 106, 6054–6059 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Woods, D. et al. Various and strong molecular algorithms utilizing reprogrammable DNA self-assembly. Nature 567, 366–372 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Douglas, S. M. et al. Fast prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37, 5001–5006 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. FIJI: an open-source platform for biological-image evaluation. Nat. Strategies 9, 676–682 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wagenbauer, Ok. F. et al. How we make DNA origami. ChemBioChem 18, 1873–1885 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Meijering, E. et al. Design and validation of a device for neurite tracing and evaluation in fluorescence microscopy pictures. Cytometry A 58, 167–176 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Dai, M., Jungmann, R. & Yin, P. Optical imaging of particular person biomolecules in densely packed clusters. Nat. Nanotechnol. 11, 798–807 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Tremendous-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments