Pardee, Okay. et al. Speedy, low-cost detection of Zika virus utilizing programmable biomolecular parts. Cell 165, 1255–1266 (2016).
Gootenberg, J. S. et al. Nucleic acid detection with CRISPR–Cas13a/C2c2. Science 356, 438–442 (2017).
Gootenberg, J. S. et al. Multiplexed and transportable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 360, 439–444 (2018).
Harrington, L. B. et al. CRISPR–Cas12a goal binding unleashes indiscriminate single-stranded DNase exercise. Science 360, 436–439 (2018).
Lee, R. A. et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proc. Natl Acad. Sci. USA 117, 25722–25731 (2020).
Bruch, R. et al. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Adv. Mater. 31, 1905311 (2019).
Kaminski, M. M. et al. A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat. Biomed. Eng. 4, 601–609 (2020).
Li, L. et al. HOLMESv2: a CRISPR–Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 8, 2228–2237 (2019).
Dai, Y. et al. Exploring the trans-cleavage exercise of CRISPR–Cas12a (cpf1) for the event of a common electrochemical biosensor. Angew. Chem. Int. Ed. 58, 17399–17405 (2019).
Li, S.-Y. et al. CRISPR–Cas12a-assisted nucleic acid detection. Cell Discov. 4, 20 (2018).
Wong, Y.-P., Othman, S., Lau, Y.-L., Radu, S. & Chee, H.-Y. Loop-mediated isothermal amplification (LAMP): a flexible approach for detection of micro-organisms. J. Appl. Microbiol. 124, 626–643 (2018).
Wang, D.-G., Brewster, J. D., Paul, M. & Tomasula, P. M. Two strategies for elevated specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20, 6048–6059 (2015).
Loynachan, C. N. et al. Platinum nanocatalyst amplification: redefining the gold customary for lateral move immunoassays with ultrabroad dynamic vary. ACS Nano 12, 279–288 (2018).
Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O. & Zhang, F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14, 2986–3012 (2019).
Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).
Abudayyeh, O. O. et al. RNA focusing on with CRISPR–Cas13. Nature 550, 280–284 (2017).
Shan, Y., Zhou, X., Huang, R. & Xing, D. Excessive-fidelity and speedy quantification of miRNA combining crRNA programmability and CRISPR/Cas13a trans-cleavage exercise. Anal. Chem. 91, 5278–5285 (2019).
Shi, T., Gao, G. & Cao, Y. Lengthy noncoding RNAs as novel biomarkers have a promising future in most cancers diagnostics. Dis. Markers 2016, 9085195 (2016).
Beermann, J., Piccoli, M.-T., Viereck, J. & Thum, T. Non-coding RNAs in growth and illness: background, mechanisms, and therapeutic approaches. Physiol. Rev. 96, 1297–1325 (2016).
Wang, C. & Jing, Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol. Sin. 39, 1110–1119 (2018).
Zhu, C.-S. et al. Avenues towards microRNA detection in vitro: a overview of technical advances and challenges. Comput. Struct. Biotechnol. J. 17, 904–916 (2019).
Dave, V. P. et al. MicroRNA amplification and detection applied sciences: alternatives and challenges for level of care diagnostics. Lab. Make investments. 99, 452–469 (2019).
Garate, X. et al. Identification of the miRNAome of early mesoderm progenitor cells and cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 8, 8072 (2018).
Chen, S. et al. Widespread and purposeful RNA circularization in localized prostate most cancers. Cell 176, 831–843.e22 (2019).
Burridge, P. W. et al. Chemically outlined technology of human cardiomyocytes. Nat. Strategies 11, 855–860 (2014).