Pelesko, J. A. & Bernstein, D. H. Modeling MEMS and NEMS (CRC, 2002).
Tsoukalas, Okay., Vosoughi Lahijani, B. & Stobbe, S. Affect of transduction scaling legal guidelines on nanoelectromechanical techniques. Phys. Rev. Lett. 124, 223902 (2020).
Bustamante, C., Keller, D. & Oster, G. The physics of molecular motors. Acc. Chem. Res. 34, 412–420 (2001).
Julicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1281 (1997).
Boyer, P. D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).
Deme, J. C. et al. Constructions of the stator complicated that drives rotation of the bacterial flagellum. Nat. Microbiol. 5, 1553–1564 (2020).
Junge, W., Lill, H. & Engelbrecht, S. ATP synthase: an electrochemical transducer with rotatory mechanics. Developments Biochem. Sci. 22, 420–423 (1997).
Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible artificial rotary molecular motor. Science 306, 1532–1537 (2004).
Roke, D., Wezenberg, S. J. & Feringa, B. L. Molecular rotary motors: Unidirectional movement round double bonds. Proc. Natl Acad. Sci. USA 115, 9423–9431 (2018).
Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).
Rothemund, P. W. Okay. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).
Gu, H., Chao, J., Xiao, S.-J. J. & Seeman, N. C. A proximity-based programmable DNA nanoscale meeting line. Nature 465, 202–205 (2010).
Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH modifications inside dwelling cells. Nat. Nanotechnol. 4, 325–330 (2009).
Marras, A. E., Zhou, L., Su, H.-J. & Castro, C. E. Programmable movement of DNA origami mechanisms. Proc. Natl Acad. Sci. USA 112, 713–718 (2015).
Kosuri, P., Altheimer, B. D., Dai, M., Yin, P. & Zhuang, X. Rotation monitoring of genome-processing enzymes utilizing DNA origami rotors. Nature 572, 136–140 (2019).
Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made from DNA. Nature 406, 605–608 (2000).
Shin, J.-S. & Pierce, N. A. An artificial DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).
Inexperienced, S., Bathtub, J. & Turberfield, A. Coordinated chemomechanical cycles: a mechanism for autonomous molecular movement. Phys. Rev. Lett. 101, 238101 (2008).
Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).
Lund, Okay. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).
Khara, D. C. et al. DNA bipedal motor strolling dynamics: an experimental and theoretical examine of the dependency on step dimension. Nucl. Acids Res. 46, 1553–1561 (2017).
Bazrafshan, A. et al. Tunable DNA origami motors translocate ballistically over μm distances at nm/s speeds. Angew. Chem. Int. Ed. 59, 9514–9521 (2020).
Tomaru, T., Suzuki, Y., Kawamata, I., Shin-ichiro, M. N. & Murata, S. Stepping operation of rotary DNA origami system. Chem. Commun. 53, 7716–7719 (2017).
Wang, Z.-G., Elbaz, J. & Willner, I. A dynamically programmed DNA transporter. Angew. Chem. Int. Ed. 51, 4322–4326 (2012).
Thubagere, A. J. et al. A cargo-sorting DNA robotic. Science 357, eaan6558 (2017).
Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).
Ketterer, P., Willner, E. M. & Dietz, H. Nanoscale rotary equipment fashioned from tight-fitting 3D DNA elements. Sci. Adv. 2, e1501209 (2016).
Ahmadi, Y. et al. The brownian and flow-driven rotational dynamics of a multicomponent DNA origami-based rotor. Small 16, 2001855 (2020).
Bertosin, E. et al. A nanoscale reciprocating rotary mechanism with coordinated mobility management. Nat. Commun. 12, 7138 (2021).
Kopperger, E. et al. A self-assembled nanoscale robotic arm managed by electrical fields. Science 359, 296–301 (2018).
Tripathi, P. et al. Electrical unfolding of cytochrome c throughout translocation via a nanopore constriction. Proc. Natl Acad. Sci. USA 118, e2016262118 (2021).
Luan, B. & Aksimentiev, A. Electro-osmotic screening of the DNA cost in a nanopore. Phys. Rev. E 78, 021912 (2008).
Holt, J. Okay. et al. Quick mass transport via sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).
Siria, A. et al. Big osmotic vitality conversion measured in a single transmembrane boron nitride nanotube. Nature 494, 455–458 (2013).
Secchi, E. et al. Large radius-dependent stream slippage in carbon nanotubes. Nature 537, 210–213 (2016).
Marbach, S. & Bocquet, L. Osmosis, from molecular insights to large-scale purposes. Chem. Soc. Rev. 48, 3102–3144 (2019).
Chen, Okay. et al. Dynamics of pushed polymer transport via a nanopore. Nat. Phys. 17, 1043–1049 (2021).
Plesa, C. et al. Direct commentary of DNA knots utilizing a solid-state nanopore. Nat. Nanotechnol. 11, 1093–1097 (2016).
Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020).
Denning, E. J., Priyakumar, U. D., Nilsson, L. & MacKerell, A. D. Jr. Affect of 2-hydroxyl sampling on the conformational properties of RNA: replace of the CHARMM all-atom additive power area for RNA. J. Comput. Chem. 32, 1929–1943 (2011).
Hart, Okay. et al. Optimization of the CHARMM additive power area for DNA: improved remedy of the BI/BII conformational equilibrium. J. Chem. Idea Comput. 8, 348–362 (2012).
Yoo, J. & Aksimentiev, A. Improved parametrization of Li, Na, Okay, and Mg ions for all-atom molecular dynamics simulations of nucleic acid techniques. J. Phys. Chem. Lett. 3, 45–50 (2012).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of straightforward potential features for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
Darden, T. A., York, D. & Pedersen, L. Particle mesh ewald: an N log(N) methodology for ewald sums in giant techniques. J. Chem. Phys. 98, 10089–10092 (1993).
Case, D. et al. Amber 12 Reference Handbook (Amber, 2012).
Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
Wilson, J. & Aksimentiev, A. Water-compression gating of nanopore transport. Phys. Rev. Lett. 120, 268101 (2018).
Zhu, F., Tajkhorshid, E. & Schulten, Okay. Stress-induced water transport in membrane channels studied by molecular dynamics. Biophys. J. 83, 154–160 (2002).
Piana, S., Donchev, A. G., Robustelli, P. & Shaw, D. E. Water dispersion interactions strongly affect simulated structural properties of disordered protein states. J. Phys. Chem. B 119, 5113–5123 (2015).
Aksimentiev, A., Brunner, R., Cruz-Chu, E. R., Comer, J. & Schulten, Okay. Modeling transport via artificial nanopores. IEEE Nanotechnol. Magazine. 3, 20–28 (2009).
Patra, N., Wang, B. & Král, P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9, 3766–3771 (2009).
Aksimentiev, A. & Schulten, Okay. Imaging α-hemolysin with molecular dynamics: ionic conductance, osmotic permeability and the electrostatic potential map. Biophys. J. 88, 3745–3761 (2005).
Aksimentiev, A., Heng, J. B., Timp, G. & Schulten, Okay. Microscopic kinetics of DNA translocation via artificial nanopores. Biophys. J. 87, 2086–2097 (2004).
Maffeo, C. & Aksimentiev, A. MrDNA: a multi-resolution mannequin for predicting the construction and dynamics of DNA techniques. Nucleic Acids Res. 48, 5135–5146 (2020).
Gerling, T., Kube, M., Kick, B. & Dietz, H. Sequence-programmable covalent bonding of designed DNA assemblies. Sci. Adv. 4, eaau1157 (2018).
Comer, J. & Aksimentiev, A. Predicting the DNA sequence dependence of nanopore ion present utilizing atomic-resolution brownian dynamics. J. Phys. Chem. C. 116, 3376–3393 (2012).
Roux, B. The calculation of the potential of imply power utilizing pc simulations. Comput. Phys. Commun. 91, 275–282 (1995).
Friedman, A. M. & Kennedy, J. W. The self-diffusion coefficients of potassium, cesium, iodide and chloride ions in aqueous options. J. Am. Chem. Soc. 77, 4499–4501 (1955).
Liu, Q. & Prosperetti, A. Wall results on a rotating sphere. J. Fluid Mech. 657, 1–21 (2010).
Pänke, O., Cherepanov, D. A., Gumbowski, Okay., Engelbrecht, S. & Junge, W. Viscoelastic dyanamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophys. J. 81, 1220–1233 (2001).