Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. International most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71(3):209–49.
Zhou J, Ren Y, Tan L, Music X, Wang M, Li Y, Cao Z, Guo C. Norcantharidin: analysis advances in pharmaceutical actions and derivatives in recent times. Biomed Pharmacother. 2020;131:110755.
Zhu M, Shi X, Gong Z, Su Q, Yu R, Wang B, Yang T, Dai B, Zhan Y, Zhang D, et al. Cantharidin therapy inhibits hepatocellular carcinoma improvement by regulating the JAK2/STAT3 and PI3K/Akt pathways in an EphB4-dependent method. Pharmacol Res. 2020;158:104868.
Yu Z, Li L, Wang C, He H, Liu G, Ma H, Pang L, Jiang M, Lu Q, Li P, et al. Cantharidin induces apoptosis and promotes differentiation of AML cells by means of nuclear receptor Nur77-mediated signaling pathway. Entrance Pharmacol. 2020;11:1321.
Xu MD, Liu L, Wu MY, Jiang M, Shou LM, Wang WJ, Wu J, Zhang Y, Gong FR, Chen Ok, et al. The mix of cantharidin and antiangiogenic therapeutics presents additive antitumor results towards pancreatic most cancers. Oncogenesis. 2018;7(11):94.
Music M, Wang X, Luo Y, Liu Z, Tan W, Ye P, Fu Z, Lu F, Xiang W, Tang L, et al. Cantharidin suppresses gastric most cancers cell migration/invasion by inhibiting the PI3K/Akt signaling pathway by way of CCAT1. Chem Biol Work together. 2020;317:108939.
Guo Z, Liu Y, Cheng X, Wang D, Guo S, Jia M, Ma Ok, Cui C, Wang L, Zhou H. Versatile biomimetic cantharidin-tellurium nanoparticles improve photothermal remedy by inhibiting the warmth shock response for mixed tumor remedy. Acta Biomater. 2020;110:208–20.
Hu S, Chang J, Ruan H, Zhi W, Wang X, Zhao F, Ma X, Solar X, Liang Q, Xu H, et al. Cantharidin inhibits osteosarcoma proliferation and metastasis by immediately focusing on miR-214-3p/DKK3 axis to inactivate beta-catenin nuclear translocation and LEF1 translation. Int J Biol Sci. 2021;17(10):2504–22.
Zheng Ok, Chen R, Solar Y, Tan Z, Liu Y, Cheng X, Leng J, Guo Z, Xu P. Cantharidin-loaded useful mesoporous titanium peroxide nanoparticles for non-small cell lung most cancers focused chemotherapy mixed with excessive efficient photodynamic remedy. Thorac Most cancers. 2020;11(6):1476–86.
Wang GS. Medical makes use of of mylabris in historical China and up to date research. J Ethnopharmacol. 1989;26(2):147–62.
Zhang JP, Qian DH, Qi LH. Results of cantharidin on interleukin-2 and interleukin-1 manufacturing in mice in vivo. Zhongguo Yao Li Xue Bao. 1992;13(3):263–64.
Until JS, Majmudar BN. Cantharidin poisoning. South Med J. 1981;74(4):444–47.
Yao H, Zhao J, Wang Z, Lv J, Du G, Jin Y, Zhang Y, Music S, Han G. Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: an efficient technique for software of a toxic conventional chinese language drugs. Colloids Surf B Biointerfaces. 2020;196:111285.
Karras DJ, Farrell SE, Harrigan RA, Henretig FM, Gealt L. Poisoning from “Spanish fly” (cantharidin). Am J Emerg Med. 1996;14(5):478–83.
Wang G, Dong J, Deng L. Overview of cantharidin and its analogues. Curr Med Chem. 2018;25(17):2034–44.
Zang GH, Li R, Zhou RS, Hao L, He HG, Zhang WD, Dong Y, Han CH. Results of disodium cantharidinate on dendritic cells of sufferers with bladder carcinoma. Oncol Lett. 2018;15(2):2273–77.
Li YD, Mao Y, Dong XD, Lei ZN, Yang Y, Lin L, Ashby CJ, Yang DH, Fan YF, Chen ZS. Methyl-cantharidimide (MCA) has anticancer efficacy in ABCB1- and ABCG2-overexpressing and cisplatin resistant most cancers cells. Entrance Oncol. 2020;10:932.
Li WZ, Han WX, Zhao N, He SM, Liang F, Fu LN, Zhang ZR, Zhai XF, Yang LB. A novel embolic microspheres with micro nano binary progressive construction for transarterial chemoembolization functions. Eur J Pharm Sci. 2020;153:105496.
Deng L, Tang S. Norcantharidin analogues: a patent evaluation (2006–2010). Skilled Opin Ther Pat. 2011;21(11):1743–53.
Tu GG, Zhan JF, Lv QL, Wang JQ, Kuang BH, Li SH. Synthesis and antiproliferative assay of norcantharidin derivatives in most cancers cells. Med Chem. 2014;10(4):376–81.
Pan MS, Cao J, Fan YZ. Perception into norcantharidin, a small-molecule artificial compound with potential multi-target anticancer actions. Chin Med. 2020;15:55.
Wang Y. Examine on the impact of norcantharidin within the therapy of ovarian most cancers. Electron J Sensible Gynecologic Endocrinol. 2019;6(16):100.
Wu X, Chen T, Shi L, Solar B, Wu S, Luo M. Statement on the medical impact of intrahepatic injection of sodium demethylcantharidate by percutaneous liver puncture beneath ultrasound. Contemp Med. 2014;20(32):40–1.
Yang S, Cai X, Huo B. 28 instances of main liver most cancers handled with sodium demethylcantharidate. New J Dig Dis. 1996;8:58–9.
Yang M, Liang B, Yu Q, Jian G, Wu Z, Lin J, Weng B. B-ultrasound-guided tumor middle injection of norcantharidin for the therapy of 41 instances of middle-advanced hepatocellular carcinoma. Individuals’s Army Surgeon. 1993;9:44–6.
Wu Y, Li C. Impact of norcantharidin on radiotherapy and chemotherapy amongst sufferers of esophageal most cancers. Med J Chin PAP. 2018;29(2):182–4.
Li Z, Liu X, Liu H. 40 instances of superior colorectal most cancers handled with norcantharidin mixed with FOLFOX4. Shandong Med J. 2010;50(46):109.
Zhang L, Xiang H. Medical commentary of norcantharidin mixed with typical chemotherapy within the therapy of gastric most cancers after surgical procedure. Med Recapitulate. 2013;19(11):2087–8.
Li J. Medical efficacy and security evaluation of norcantharidin tablets adjuvant radiotherapy and chemotherapy within the therapy of esophageal most cancers. J Med Discussion board. 2019;40(12):156–9.
Ke H, Li X, Wang X. Therapy of main hepatocellular carcinoma with iodine 125 particle implantation mixed with norcantharidin sodium and the adjustments of serum VEGF and bFGF. Gansu Med J. 2017;36(8):622–5.
Feng B. Efficacy evaluation of radiotherapy mixed with sodium norcantharidate for stage III cervical most cancers. China International Medical Therapy. 2010;29(3):40–1.
Ke H, Li X. The medical examine of iodine-125 seed implantation mixed with disodium norcantharidate within the therapy of main liver most cancers. Chin J Surg Onco. 2016;8(3):173–6.
Li Z, Ma Q, Zhang Y, Wang X, Liu Y. Gemcitabine and cisplatin mixed with norcantharidin sodium for the therapy of superior NSCLC. Chin J Most cancers Prev Deal with. 2014;21(4):293–5.
Guan Z. Medical commentary on adjuvant therapy of fifty instances of superior NSCLC with sodium norcantharidin. J Qiqihar Med Univ. 2010;31(17):2727.
Zhi X, Li G. Medical commentary on adjuvant therapy of 30 instances of superior lung most cancers with sodium norcantharidin. J Hebei North Univ (Medical Version). 2008;25(3):60.
Chen S, Wang J, Tan Q, Tian S. Sodium norcantharidin mixed with DF routine within the therapy of superior gastric carcinoma. J Fundamental Clin Oncol. 2013;26(4):311–3.
Xu Y, Meng Q, Su F, Zhao T. Medical examine of sodium norcantharidate mixed with hepatic arterial chemoembolization within the therapy of superior liver most cancers. Med Recapitul. 2011;17(13):2058–9.
Zhao P. Go to a sodoum cantharidate medical commentary of therapy of esophageal most cancers with radiotherapy. Med J Chin Individuals’s Well being. 2010;22(13):1648–50.
Fan C. The commentary of the effeects of disodium norcantharidate within the therapy of superior main liver most cancers. J Fundamental Clin Oncol. 2010;23(1):50–1.
Li Y, Wu J, Liu H, Zhang L. Results of norcantharidate sodium injection on immune perform in sufferers with NSCLC. Chin J Gerontol. 2015;35(6):1538–40.
Lu H, Huang G, Pan MS, Lin Y, Chen Q. Results of cisplatin mixed with norcantharidate sodium on the immune perform of sufferers with NSCLC in acute part. Hebei Med J. 2017;39(2):261–3.
Bei YY, Chen XY, Liu Y, Xu JY, Wang WJ, Gu ZL, Xing KL, Zhu AJ, Chen WL, Shi LS, et al. Novel norcantharidin-loaded liver focusing on chitosan nanoparticles to reinforce intestinal absorption. Int J Nanomedicine. 2012;7:1819–27.
Yan D, Ni LK, Chen HL, Chen LC, Chen YH, Cheng CC. Amphiphilic nanoparticles of resveratrol-norcantharidin to reinforce the toxicity in zebrafish embryo. Bioorg Med Chem Lett. 2016;26(3):774–7.
Liu MC, Ma XQ, Xu Y, Peng LH, Han M, Gao JQ. Liquid chromatography-tandem mass spectrometry analysis of the pharmacokinetics of a diacid metabolite of norcantharidin loaded in folic acid-targeted liposomes in mice. J Pharm Biomed Anal. 2016;119:76–83.
Wang L, He H, Tang X, Shao R, Chen D. A much less irritant norcantharidin lipid microspheres: formulation and drug distribution. Int J Pharm. 2006;323(1–2):161–7.
Liu M, Ma X, Jin Z, Li W, Guo M, Li F. Dedication and pharmacokinetic examine of the diacid metabolite of norcantharidin in beagle plasma by use of liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2013;405(28):9273–83.
Matsumura Y. 35 years of discussions with Prof. Maeda on the EPR impact and future instructions. J Management Launch. 2022;348:966–9.
Zhai BT, Tian H, Solar J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic goal in most cancers. J Transl Med. 2022;20(1):135.
Solar R, Dai J, Ling M, Yu L, Yu Z, Tang L. Supply of triptolide: a mixture of conventional chinese language drugs and nanomedicine. J Nanobiotechnol. 2022;20(1):194.
Zhang R, Liu T, Li W, Ma Z, Pei P, Zhang W, Yang Ok, Tao Y. Tumor microenvironment-responsive BSA nanocarriers for mixed chemo/chemodynamic most cancers remedy. J Nanobiotechnol. 2022;20(1):223.
Yang Y, Liu X, Ma W, Xu Q, Chen G, Wang Y, Xiao H, Li N, Liang XJ, Yu M, et al. Gentle-activatable liposomes for repetitive on-demand drug launch and immunopotentiation in hypoxic tumor remedy. Biomaterials. 2021;265:120456.
Zhang ZQ, Music SC. A number of hyperthermia-mediated launch of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for mixture most cancers remedy. Biomaterials. 2017;132:16–27.
Xiao H, Guo Y, Liu H, Liu Y, Wang Y, Li C, Cisar J, Skoda D, Kuritka I, Guo L, et al. Construction-based design of charge-conversional drug self-delivery programs for higher focused most cancers remedy. Biomaterials. 2020;232:119701.
Freidus LG, Kumar P, Marimuthu T, Pradeep P, Choonara YE. Theranostic mesoporous silica nanoparticles loaded with a curcumin-naphthoquinone conjugate for potential most cancers intervention. Entrance Mol Biosci. 2021;8:670792.
Li M, Du C, Guo N, Teng Y, Meng X, Solar H, Li S, Yu P, Galons H. Composition design and medical software of liposomes. Eur J Med Chem. 2019;164:640–53.
Wu J, Ren T. Preparation and characterization of norcantharidin encapsulated in liposome. Chin Pharm J. 2005;40(19):49–53.
Miao X. Research on norcantharidin proliposome. Jilin College; 2006.
Liu H. Manufacturing and pharmacokinetic analysis of NCTD-proliposome. Jilin College; 2008.
Zhang R. Disposition of disodium norcantharidate in vivo and preparation of disodium norcantharidate liposome. Cham: Shandong College; 2009.
Gu Z, Wang J, Guo Z, Tang J, Zhang X. Research on preparation and drug launch traits of norcantharidin liposomes in vitro. Anti Infect Pharm. 2012;9(4):277–80.
Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the supply of poorly soluble medicine: from nanoformulation to medical approval. Adv Drug Deliv Rev. 2020;156:80–118.
Chen S. The examine of norcantharidin-loaded poly (ethylene glycol)-poly (caprolactone) block copolymeric micelles. Southern Medical College; 2012.
Yin M, Yang Z, Bao Y, Gan J, Cai J. Preparation and characterization of norepinephrine cantharidin-poloxamer polymer nano-micelle. J Hubei Polytechnic Univ. 2015;31(6):43–6.
Wang L, Chen D, Fang C. Preparation of norcantharidin nano-micelle and examine on its antitumor impact. China Pharm. 2017;28(19):2680–4.
Mir M, Ahmed N, Rehman AU. Latest functions of PLGA primarily based nanostructures in drug supply. Colloids Surf B Biointerfaces. 2017;159:217–31.
Zeng Q, Solar M. Poly(lactide-co-glycolide) nanoparticles as carriers for norcantharidin. Mater Sci Eng C. 2009;29(3):708–13.
Wadhawan A, Singh J, Sharma H, Handa S, Singh G, Kumar R, Barnwal RP, Pal KI, Chatterjee M. Anticancer biosurfactant-loaded PLA-PEG nanoparticles induce apoptosis in human MDA-MB-231 breast most cancers cells. ACS Omega. 2022;7(6):5231–41.
Ren J, Zhong Q, Li H, Yuan H, Yu X, Cheng H. Preparation and cytotoxicity of polylactic acid-polyethylene glycol nanoparticles loaded with norcantharidin. Pharm Care & Res. 2007;7(4):294–7.
Huang G, Liu Y, Chen L. Chitosan and its derivatives as autos for drug supply. Drug Deliv. 2017;24(sup1):108–13.
Feng W. Examine on the nanoparticles of norcantharidin-hydroxypropyl chitosan and its in vitro anti-cancer exercise. Shandong College of Know-how; 2012.
Liu Y, Luo X, Xu X, Gao N, Liu X. Preparation, characterization and in vivo pharmacokinetic examine of PVP-modified oleanolic acid liposomes. Int J Pharm. 2017;517(1–2):1–7.
Ding XY, Hong CJ, Liu Y, Gu ZL, Xing KL, Zhu AJ, Chen WL, Shi LS, Zhang XN, Zhang Q. Pharmacokinetics, tissue distribution, and metabolites of a polyvinylpyrrolidone-coated norcantharidin chitosan nanoparticle formulation in rats and mice, utilizing LC-MS/MS. Int J Nanomedicine. 2012;7:1723–35.
Sharifalhoseini M, Es-Haghi A, Vaezi G, Shajiee H. Biosynthesis and characterisation of strong lipid nanoparticles and investigation of toxicity towards breast most cancers cell line. Iet Nanobiotechnol. 2021;15(8):654–63.
Tian H. Research on norcantharidin-loaded strong lipid nanoparticles. Shandong College; 2007.
Jiang T, Ma S, Shen Y, Li Y, Pan R, Xing H. Topical anesthetic and ache aid utilizing penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers. Drug Deliv. 2021;28(1):478–86.
Yan Z, Yang Ok, Tang X, Bi Y, Ding Y, Deng M, Xia D, Zhao Y, Chen T. Norcantharidin nanostructured lipid service (NCTD-NLC) suppresses the viability of human hepatocellular carcinoma hepG2 cells and accelerates the apoptosis. J Immunol Res. 2022;2022:3851604.
Abourehab M, Ansari MJ, Singh A, Hassan A, Abdelgawad MA, Shrivastav P, Abualsoud BM, Amaral LS, Pramanik S. Cubosomes as an rising platform for drug supply: a evaluation of the state-of-the-art. J Mater Chem B. 2022;10(15):2781–819.
Li S, Liu W, Zhu J, Wu W. Examine on preparation and launch price in vitro of norcantharidin cubic liquid crystalline nanoparticles. CJTCMP. 2017;32(12):5566–8.
Siddiqui B, Rehman AU, Haq IU, Al-Dossary AA, Elaissari A, Ahmed N. Exploiting latest developments for the synthesis and floor functionalization of mesoporous silica nanoparticles in the direction of biomedical functions. Int J Pharm X. 2022;4:100116.
Xiong Y, Ma R, Tang H, Li F. Examine on preparation and in vitro launch of norcantharidin-loaded mesoporous silica nanoparticles. J Jiangxi Univ TCM. 2018;30(4):76–8.
Kargozar S, Mollazadeh S, Kermani F, Webster TJ, Nazarnezhad S, Hamzehlou S, Baino F. Hydroxyapatite nanoparticles for improved most cancers theranostics. J Funct Biomater. 2022;13(3):100.
Abdul-Monem MM, Kamoun EA, Ahmed DM, El-Fakharany EM, Al-Abbassy FH, Aly HM. Gentle-cured hyaluronic acid composite hydrogels utilizing riboflavin as a photoinitiator for bone regeneration functions. J Taibah Univ Med Sci. 2021;16(4):529–39.
Li J, Liu X, Park S, Miller AN, Terzic A, Lu L. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. J Biomed Mater Res A. 2019;107(3):631–42.
Huang Z, Solar H, Lu Y, Zhao F, Liu C, Wang Q, Zheng C, Lu R, Music Ok. Strontium/chitosan/hydroxyapatite/norcantharidin composite that inhibits osteosarcoma and promotes osteogenesis in vitro. Biomed Res Int. 2020;2020:9825073.
Liu W, Pan Y, Xiao W, Xu H, Liu D, Ren F, Peng X, Liu J. Latest developments on zinc(ii) metal-organic framework nanocarriers for physiological pH-responsive drug supply. Medchemcomm. 2019;10(12):2038–51.
Yang X, Tang Q, Jiang Y, Zhang M, Wang M, Mao L. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a common platform for cytosolic protein supply and genome enhancing. J Am Chem Soc. 2019;141(9):3782–6.
Wang J, Huang X, Li H, Yan D, Huang W. Two zn(II) coordination polymers with anticancer drug norcantharidin as ligands for most cancers chemotherapy. Dalton Trans. 2022;51(14):5624–34.
Zhang M, He Y. Preparation and high quality analysis of norcantharidin nanosuspensions. J Int Pharm Res. 2019;46(3):211–7.
Assaf SM, Maaroof KT, Altaani BM, Ghareeb MM, Abu AA. Jojoba oil-based microemulsion for transdermal drug supply. Res Pharm Sci. 2021;16(4):326–40.
Zhang L, Solar X, Zhang ZR. An investigation on liver-targeting microemulsions of norcantharidin. Drug Deliv. 2005;12(5):289–95.
Cao X, Zhu Q, Wang QL, Adu-Frimpong M, Wei CM, Weng W, Bao R, Wang YP, Yu JN, Xu XM. Enchancment of oral bioavailability and Anti-Tumor Impact of Zingerone Self-Microemulsion Drug Supply System. J Pharm Sci. 2021;110(7):2718–27.
Zeng L, Zhang Y. Growth, optimization and in vitro analysis of norcantharidin loadedself-nanoemulsifying drug supply programs (NCTD-SNEDDS). Pharm Dev Technol. 2017;22(3):399–408.
Gui Y, Hu R, Wang B, Zhou H, Jin D. Preparation and stability of norcantharidin strong self-microemulsion. J Anhui Univ Chinese language Med. 2017;36(2):76–9.
Xu X, Li Y, Shen Y, Guo S. Synthesis and in vitro mobile analysis of novel anti-tumor norcantharidin-conjugated chitosan derivatives. Int J Biol Macromol. 2013;62:418–25.
Li M, Xu X, Lu F, Guo S. Major in vitro and in vivo analysis of norcantharidin-chitosan/poly (vinyl alcohol) for most cancers therapy. Drug Deliv. 2014;21(4):293–301.
Guan M, Zhou Y, Zhu QL, Liu Y, Bei YY, Zhang XN, Zhang Q. N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver most cancers remedy with excessive focusing on efficacy. Nanomedicine-Uk. 2012;8(7):1172–81.
Xu X, Li Y, Wang F, Lv L, Liu J, Li M, Guo A, Jiang J, Shen Y, Guo S. Synthesis, in vitro and in vivo analysis of latest norcantharidin-conjugated hydroxypropyltrimethyl ammonium chloride chitosan derivatives as polymer therapeutics. Int J Pharm. 2013;453(2):610–9.
Chi J, Jiang Z, Chen X, Peng Y, Liu W, Han B, Han B. Research on anti-hepatocarcinoma impact, pharmacokinetics and tissue distribution of carboxymethyl chitosan primarily based norcantharidin conjugates. Carbohydr Polym. 2019;226:115297.
Jiang Z, Chi J, Han B, Liu W. Preparation and pharmacological analysis of norcantharidin-conjugated carboxymethyl chitosan in mice bearing hepatocellular carcinoma. Carbohydr Polym. 2017;174:282–90.
Chi J, Jiang Z, Qiao J, Peng Y, Liu W, Han B. Synthesis and anti-metastasis actions of norcantharidin-conjugated carboxymethyl chitosan as a novel drug supply system. Carbohydr Polym. 2019;214:80–9.
Chi J, Jiang Z, Qiao J, Zhang W, Peng Y, Liu W, Han B. Antitumor analysis of carboxymethyl chitosan primarily based norcantharidin conjugates towards gastric most cancers as novel polymer therapeutics. Int J Biol Macromol. 2019;136:1–12.
Wang YJ, Wang J, Zhang HY, He HB, Tang X. Formulation, preparation and analysis of flunarizine-loaded lipid microspheres. J Pharm Pharmacol. 2007;59(3):351–7.
Lin X, Zhang B, Zhang Ok, Zhang Y, Wang J, Qi N, Yang S, He H, Tang X. Preclinical evaluations of norcantharidin-loaded intravenous lipid microspheres with low toxicity. Skilled Opin Drug Deliv. 2012;9(12):1449–62.
Ma J, Teng H, Wang J, Zhang Y, Ren T, Tang X, Cai C. A extremely secure norcantharidin loaded lipid microspheres: preparation, biodistribution and focusing on analysis. Int J Pharm. 2014;473(1–2):475–84.
Shen Y, Li W. HA/HSA co-modified erlotinib-albumin nanoparticles for lung most cancers therapy. Drug Des Devel Ther. 2018;12:2285–92.
Yan F, Li B, Shen F, Fu Q. Formulation and characterization of albumin microspheres containing norcantharidate for liver tumor focusing on. Drug Deliv. 2015;22(6):862–8.
Wang Q, Cheng Y, Zhang W, Zhang X. Examine on preparation and in vitro launch of norcantharidin-loaded chitosan microspheres. Chin J New Medication. 2008;17(11):947–51.
Liu Z, Zhao L, Tan X, Wu Z, Zhou N, Dong N, Zhang Y, Yin T, He H, Gou J, et al. Preclinical evaluations of Norcantharidin liposome and emulsion hybrid supply system with improved encapsulation effectivity and enhanced antitumor exercise. Skilled Opin Drug Deliv. 2022;19(4):451–64.
Bajracharya R, Music JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Website positioning SH, Park JW, Jeong SH, et al. Useful ligands for enhancing anticancer drug remedy: present standing and functions to drug supply programs. Drug Deliv. 2022;29(1):1959–70.
Uckun FM, Jaszcz W, Ambrus JL, Fauci AS, Gajl-Peczalska Ok, Music CW, Wick MR, Myers DE, Waddick Ok, Ledbetter JA. Detailed research on expression and performance of CD19 floor determinant through the use of B43 monoclonal antibody and the medical potential of anti-CD19 immunotoxins. Blood. 1988;71(1):13–29.
Zhang J, Tang Y, Qian B, Sheng H. Preparation and analysis of norcantharidin-encapsulated liposomes modified with a novel CD19 monoclonal antibody 2E8. J Huazhong Univ Sci Technolog Med Sci. 2010;30(2):240–7.
Zhang J, Shen D, Jia M, Zhao H, Tang Y. The focusing on impact of Hm2E8b-NCTD-liposomes on B-lineage leukaemia stem cells is related to the HLF-SLUG axis. J Drug Goal. 2018;26(1):55–65.
Zatovicova M, Kajanova I, Barathova M, Takacova M, Labudova M, Csaderova L, Jelenska L, Svastova E, Pastorekova S, Harris AL, et al. Novel humanized monoclonal antibodies for focusing on hypoxic human tumors by way of two distinct extracellular domains of carbonic anhydrase IX. Most cancers Metab. 2022;10(1):3.
Aldera AP, Govender D. Carbonic anhydrase IX: a regulator of pH and participant in carcinogenesis. J Clin Pathol. 2021.
Wang L, Zhang Y, Yang Z, Lu D, Fang C, Xu Q. Examine on lung focusing on of carbonic antibody IX modified norcantharidin nano-micelle. Pharmacol Clin Chin Materia Med. 2017;33(1):52–6.
Speciale A, Muscara C, Molonia MS, Cristani M, Cimino F, Saija A. Latest advances in glycyrrhetinic acid-functionalized biomaterials for liver cancer-targeting remedy. Molecules. 2022;27(6):1775.
Zhu J, Zhang W, Wang D, Li S, Wu W. Preparation and characterization of norcantharidin liposomes modified with stearyl glycyrrhetinate. Exp Ther Med. 2018;16(3):1639–46.
Zhang H, Jiang Y, Ni X, Chen L, Wu M, Liu J, Yang B, Shan X, Yang L, Fan J, et al. Glycyrrhetinic acid-modified norcantharidin nanoparticles for energetic focused remedy of hepatocellular carcinoma. J Biomed Nanotechnol. 2018;14(1):114–26.
Chang G, Wang Y, Huang X, Tan X, Wang Y, Ma H, Huang S, Wang Y. Preparation strategy of liver focusing on norcantharidin liposomes modified by glycyrrhetinic acid and trans-activator of transcription. Conventional Chin Drug Res Clin Pharmacol. 2020;31(7):855–61.
Grewal PK. The Ashwell-Morell receptor. Strategies Enzymol. 2010;479:223–41.
D’Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting-strategies and functions. J Management Launch. 2015;203:126–39.
Hu Z, Zhang L, Zhou Y, Zhang X. Synthesis of hepatocyte-targeting norcantharidin prodrug and preparation of its nanoparticles. Chin Pharm J. 2009;44(9):679–84.
Hu Z, Zhou Y, Zhang X. Investigation on anticancer exercise of nanoparticles loaded lactosyl-norcantharidin. Chin Conventional Herb Medication. 2010;41(12):2005–10.
Wang Q, Zhang L, Hu W, Hu Z, Zhang X. Preparation and in vitro antineoplastic exercise of norcantharidin-associated galactosylated chitosan nanoparticles. Chin Pharm J. 2009;44(12):913–9.
Hu W, Zhang L, Wang Q, Chen X, Bei Y, Xu J, Wang W, Zhang X. Examine on an energetic hepatocyte-targeting antineoplastic exercise of norcantharidin-loaded galactosylated chitosan nanoparticles. Chin J New Medication. 2010;19(19):1814–20.
Wu C, Guo W, Zhang L. Preparation of glycyrrhetic acid derivatives-modified norcantharidin liposome and examine on its liver-targeting property in mice. China Pharm. 2009;20(28):2184–6.
Zhou Q, Shi D, Mei S, Yang X. Preparation and characterization of galactosylated ldl cholesterol ligand modified liposomes containing norcantharidin. Chin J Prescription drugs. 2019;50(10):1208–14.
Zhang Z, Yang L, Hou J, Xia X, Wang J, Ning Q, Jiang S. Promising constructive liver focusing on supply system primarily based on arabinogalactan-anchored polymeric micelles of norcantharidin. Artif Cells Nanomed Biotechnol. 2018;46(sup3):630-40.
Jiang S, Li M, Hu Y, Zhang Z, Lv H. Multifunctional self-assembled micelles of galactosamine-hyaluronic acid-vitamin E succinate for focusing on supply of norcantharidin to hepatic carcinoma. Carbohydr Polym. 2018;197:194–203.
Kapoor-Narula U, Lenka N. Most cancers stem cells and tumor heterogeneity: deciphering the function in tumor development and metastasis. Cytokine. 2022;157:155968.
Takahashi-Yanaga F, Kahn M. Focusing on wnt signaling: can we safely eradicate most cancers stem cells? Clin Most cancers Res. 2010;16(12):3153–62.
Ghosh N, Hossain U, Mandal A, Sil PC. The wnt signaling pathway: a possible therapeutic goal towards most cancers. Ann N Y Acad Sci. 2019;1443(1):54–74.
Hsieh CH, Chao KS, Liao HF, Chen YJ. Norcantharidin, spinoff of cantharidin, for most cancers stem cells. Evid Based mostly Complement Alternat Med. 2013;2013:838651.
Wang WJ, Wu MY, Shen M, Zhi Q, Liu ZY, Gong FR, Tao M, Li W. Cantharidin and norcantharidin impair stemness of pancreatic most cancers cells by repressing the beta-catenin pathway and strengthen the cytotoxicity of gemcitabine and erlotinib. Int J Oncol. 2015;47(5):1912–22.
Li Y, Xiao Y, Lin HP, Reichel D, Bae Y, Lee EY, Jiang Y, Huang X, Yang C, Wang Z. In vivo beta-catenin attenuation by the integrin alpha5-targeting nano-delivery technique suppresses triple destructive breast most cancers stemness and metastasis. Biomaterials. 2019;188:160–72.
Xu L, Bai Q, Zhang X, Yang H. Folate-mediated chemotherapy and diagnostics: an up to date evaluation and outlook. J Management Launch. 2017;252:73–82.
Liu Y, Yang H, Wu X, Mao H, Gong Z, Wan Z, Zhang W, Wu Y, Gu R, Han N. Preparation, characterization and pharmacodynamic analysis in vitro of norcantharidin-loaded folate-conjugated stealth niosomes. Chin J New Medication. 2013;22(18):2174–8.
Liu MC, Liu L, Wang XR, Shuai WP, Hu Y, Han M, Gao JQ. Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin improve antitumor efficiency for H22 hepatocellular carcinoma each in vitro and in vivo. Int J Nanomedicine. 2016;11:1395–412.
Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges in the direction of focused supply of most cancers therapeutics. Nat Commun. 2018;9(1):1410.
Golombek SK, Might JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor focusing on by way of EPR: methods to reinforce affected person responses. Adv Drug Deliv Rev. 2018;130:17–38.
Uthaman S, Huh KM, Park IK. Tumor microenvironment-responsive nanoparticles for most cancers theragnostic functions. Biomater Res. 2018;22:22.
Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Conventional chinese language medicine-combination therapies using nanotechnology-based focused supply programs: a brand new technique for antitumor therapy. Int J Nanomedicine. 2019;14:2029–53.
Xiao Y, Gu Y, Qin L, Chen L, Chen X, Cui W, Li F, Xiang N, He X. Injectable thermosensitive hydrogel-based drug supply system for native most cancers remedy. Colloids Surf B Biointerfaces. 2021;200:111581.
Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Kaleem M, Dalhat MH. Thermosensitive hydrogels loaded with resveratrol nanoemulsion: Formulation optimization by central composite design and analysis in MCF-7 human breast most cancers cell strains. Gels. 2022;8(7):450.
Zhou F, Xie M, Zhou H, Cai X, Ni J, Wang Z. Research on preparation and drug launch traits of norcantharidin temperature-sensitive in situ gel in vitro. Chin J Clin Pharm. 2017;26(3):177–80.
Xie M, Cai X, Peng J, Jiang X, Ge M. Examine on preparation and anti-hepatoma of norcantharidin thermosensitive in-situ gel. Chin J Mod Appl Pharm. 2017;34(9):1262–5.
Xie MH, Ge M, Peng JB, Jiang XR, Wang DS, Ji LQ, Ying Y, Wang Z. In-vivo anti-tumor exercise of a novel poloxamer-based thermosensitive in situ gel for sustained supply of norcantharidin. Pharm Dev Technol. 2019;24(5):623–9.
Li XY, Guan QX, Shang YZ, Wang YH, Lv SW, Yang ZX, Wang R, Feng YF, Li WN, Li YJ. Steel-organic framework IRMOFs coated with a temperature-sensitive gel delivering norcantharidin to deal with liver most cancers. World J Gastroenterol. 2021;27(26):4208–20.
Gao B, Luo J, Liu Y, Su S, Fu S, Yang X, Li B. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the therapy of hepatocellular carcinoma. Int J Nanomedicine. 2021;16:4073–85.
Li Z, Huang J, Wu J. pH-Delicate nanogels for drug supply in most cancers remedy. Biomater Sci. 2021;9(3):574–89.
Yao Y, Su Z, Liang Y, Zhang N. pH-Delicate carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int J Nanomedicine. 2015;10:6185–97.
Zhou Y, Xu J, Guan M, Zhang X. Preparation of lactosyl-norcantharitin phospholipid advanced and its pH-sensitive liposomes. Chin J New Medication. 2011;20(17):1631–8.
Zhou Y, Ye J. Liver focusing on anti-tumor exercise of pH-sensitive liposomes loaded with lactosyl-norcantharitin phospholipids advanced. Chin Conventional Herb Medication. 2014;45(19):2803–8.
Li L, Xu Y, Milligan I, Fu L, Franckowiak EA, Du W. Synthesis of extremely pH-responsive glucose poly(orthoester). Angew Chem Int Ed Engl. 2013;52(51):13699–702.
Cong Y, Xiao H, Xiong H, Wang Z, Ding J, Li C, Chen X, Liang XJ, Zhou D, Huang Y. Twin drug backboned shattering polymeric theranostic nanomedicine for synergistic eradication of patient-derived lung most cancers. Adv Mater. 2018;30(11):1706220.
Wang S. Examine on the development and efficiency of cross-linked polymer nano-cooperative prodrugs in response to tumor microenvironment. Anhui College; 2021.
Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP. Floor conjugation of triphenylphosphonium to focus on poly(amidoamine) dendrimers to mitochondria. Biomaterials. 2012;33(18):4773–82.
Xiang H, Xue F, Yi T, Tham HP, Liu JG, Zhao Y. Cu2 – xS nanocrystals cross-linked with chlorin e6-functionalized polyethylenimine for synergistic photodynamic and photothermal remedy of most cancers. ACS Appl Mater Interfaces. 2018;10(19):16344–51.
Han L, Lv H, Wang D, Wang J, Tang M. Mitochondrial focusing on perform of norcantharidin TPP-PEG-PCL nanomicelles promotes apoptosis of liver tumor cells. Chin Conventional Herb Medication. 2020;51(19):4943–53.
He S, Li J, Cheng P, Zeng Z, Zhang C, Duan H, Pu Ok. Cost-reversal polymer nano-modulators for photodynamic immunotherapy of most cancers. Angew Chem Int Ed Engl. 2021;60(35):19355–63.
Wu P, Wang X, Wang Z, Ma W, Guo J, Chen J, Yu Z, Li J, Zhou D. Gentle-activatable prodrug and AIEgen copolymer nanoparticle for dual-drug monitoring and mixture remedy. ACS Appl Mater Interfaces. 2019;11(20):18691–700.
Wang Z, Kuang G, Yu Z, Li A, Zhou D, Huang Y. Gentle-activatable twin prodrug polymer nanoparticle for exact synergistic chemotherapy guided by drug-mediated computed tomography imaging. Acta Biomater. 2019;94:459–68.
Dong H, Yang D, Hu Y, Music X. Latest advances in good nanoplatforms for tumor non-interventional embolization remedy. J Nanobiotechnol. 2022;20(1):337.
Perez-Lopez A, Martin-Sabroso C, Gomez-Lazaro L, Torres-Suarez AI, Aparicio-Blanco J. Embolization remedy with microspheres for the therapy of liver most cancers: state-of-the-art of medical translation. Acta Biomater. 2022;149:1–15.
Liu X, Heng WS, Paul, Li Q, Chan LW. Novel polymeric microspheres containing norcantharidin for chemoembolization. J Management Launch. 2006;116(1):35–41.
Music Y. Examine on norcantharidin chitosan microspheres for transcatheter arterial chemoembolization. Suzhou College; 2010.
Zhou X, Wang H, Bei Y, Xu J, Wang W, Zhang X. Preparation and in vitro drug launch of norcantharidin sustained-release microsphere for hepatic arterial embolism. China Pharm. 2011;22(13):1185–9.
Zhou X. Research on the preparation and impact of the lipidic strong dispersion of norcantharidin microspheres for transcatheter arterial chemoembolization. Suzhou College; 2011.
Zhang GY, Zhou XF, Zhou XY, Wen QY, You BG, Liu Y, Zhang XN, Jin Y. Impact of alginate-chitosan sustained launch microcapsules for transhepatic arterial embolization in VX2 rabbit liver most cancers mannequin. J Biomed Mater Res A. 2013;101(11):3192–200.
Zhao Z, Li Y, Xie MB. Silk fibroin-based nanoparticles for drug supply. Int J Mol Sci. 2015;16(3):4880–903.
Qu J, Liu Y, Yu Y, Li J, Luo J, Li M. Silk fibroin nanoparticles ready by electrospray as managed launch carriers of cisplatin. Mater Sci Eng C Mater Biol Appl. 2014;44:166–74.
Zhang G. Research on the preparation and impact of norcantharidin loaded silk fibroin/chitosan microspheres for transcatheter arterial chemoembolization. Suzhou College; 2013.
Wen Q. Preparation of norcantharidin-N-chitosan/silk fibroin-microspheres and its tumor inhibitory impact. Suzhou College; 2013.
Wen Q, Zhang G, Zhou X, Yuan Q, Zhang X, Jin Y. Anti-tumor impact of norcantharidin-N-chitosan/silk fibroin-microspheres in a rabbit mannequin of hepatic arterial embolization. Chin J New Medication. 2014;23(9):1075–80.
Hu CM, Aryal S, Zhang L. Nanoparticle-assisted mixture therapies for efficient most cancers therapy. Ther Deliv. 2010;1(2):323–34.
Qi SS, Solar JH, Yu HH, Yu SQ. Co-delivery nanoparticles of anti-cancer medicine for enhancing chemotherapy efficacy. Drug Deliv. 2017;24(1):1909–26.
Pan J, Rostamizadeh Ok, Filipczak N, Torchilin VP. Polymeric co-delivery programs in most cancers therapy: an outline on part medicine’ dosage ratio impact. Molecules. 2019;24(6):1035.
Ziberna L, Samec D, Mocan A, Nabavi SF, Bishayee A, Farooqi AA, Sureda A, Nabavi SM. Oleanolic acid alters a number of cell signaling pathways: implication in most cancers prevention and remedy. Int J Mol Sci. 2017;18(3):643.
Liu D, Fang Z, Tang Z, Zou L, Leng J. Optimization of preparation strategy of norcantharidin and oleanolic acid liposome by central composite design-response floor methodology. West China J Pharm Sci. 2014;29(2):125–8.
Luan F, He X, Zeng N. Tetrandrine: a evaluation of its anticancer potentials, medical settings, pharmacokinetics and drug supply programs. J Pharm Pharmacol. 2020;72(11):1491–512.
Xiong Y, Tang H, Ma R, Li F. Preparation strategy of norcantharidin/tetrandrine twin loaded liposomes and their in vitro launch traits. China J Chin Materia Med. 2018;43(12):2531–6.
Xiong Y, Tang H, Liu W, Zhang T, Ma R, Mu C, Zhu Z, Li F. Characterization and analysis of a folic acid receptor-targeted norcantharidin/tetrandrine dual-drug loaded supply system. J Nanomater. 2019;2019:1–15.
Ren J, Li G, Zhao W, Lin L, Ye T. Norcantharidin mixed with ABT-737 for hepatocellular carcinoma: therapeutic results and molecular mechanisms. World J Gastroenterol. 2016;22(15):3962–8.
Liu M, Tu J, Feng Y, Zhang J, Wu J. Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 primarily based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle towards hepatic carcinoma. J Nanobiotechnol. 2020;18(1):114.
Shao J, Zaro J, Shen Y. Advances in exosome-based drug supply and tumor focusing on: from tissue distribution to intracellular destiny. Int J Nanomedicine. 2020;15:9355–71.
Yang L, Ye M, Wang Y, Nie X, Yuan W, Wang Y. Examine on optimizing drug loading strategy of norcantharidin exosomes by response floor methodology. J Mod Med Well being. 2020;36(9):1297–301.
Liang L, Zhao L, Wang Y, Wang Y. Therapy for hepatocellular carcinoma is enhanced when norcantharidin is encapsulated in exosomes derived from bone marrow mesenchymal stem cells. Mol Pharm. 2021;18(3):1003–13.
Xie D, Xie J, Wan Y, Ma L, Qi X, Wang Ok, Yang S. Norcantharidin blocks Wnt/beta-catenin signaling by way of promoter demethylation of WIF-1 in glioma. Oncol Rep. 2016;35(4):2191–7.
Chen YL, Hung MH, Chu PY, Chao TI, Tsai MH, Chen LJ, Hsiao YJ, Shih CT, Hsieh FS, Chen KF. Protein phosphatase 5 promotes hepatocarcinogenesis by means of interplay with AMP-activated protein kinase. Biochem Pharmacol. 2017;138:49–60.
Qiu P, Wang S, Liu M, Ma H, Zeng X, Zhang M, Xu L, Cui Y, Xu H, Tang Y, et al. Norcantharidin inhibits cell development by suppressing the expression and phosphorylation of each EGFR and c-Met in human colon most cancers cells. BMC Most cancers. 2017;17(1):55.
He Q, Xue S, Tan Y, Zhang L, Shao Q, Xing L, Li Y, Xiang T, Luo X, Ren G. Twin inhibition of akt and ERK signaling induces cell senescence in triple-negative breast most cancers. Most cancers Lett. 2019;448:94–104.
Chen YN, Chen JC, Yin SC, Wang GS, Tsauer W, Hsu SF, Hsu SL. Effector mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cells. Int J Most cancers. 2002;100(2):158–65.
Chen S, Wan P, Ding W, Li F, He C, Chen P, Li H, Hu Z, Tan W, Li J. Norcantharidin inhibits DNA replication and induces mitotic disaster by degrading initiation protein Cdc6. Int J Mol Med. 2013;32(1):43–50.
Huang S, Tuergong G, Zhu H, Wang X, Weng G, Ren Y. Norcantharidin induces G2/M arrest and apoptosis by way of activation of ERK and JNK, however not p38 signaling in human renal cell carcinoma ACHN cells. Acta Pharm. 2021;71(2):267–78.
Yu CC, Ko FY, Yu CS, Lin CC, Huang YP, Yang JS, Lin JP, Chung JG. Norcantharidin triggers cell dying and DNA harm by means of S-phase arrest and ROS-modulated apoptotic pathways in TSGH 8301 human urinary bladder carcinoma cells. Int J Oncol. 2012;41(3):1050–60.
Zheng LC, Yang MD, Kuo CL, Lin CH, Fan MJ, Chou YC, Lu HF, Huang WW, Peng SF, Chung JG. Norcantharidin-induced apoptosis of AGS human gastric most cancers cells by means of reactive oxygen species manufacturing, and caspase- and mitochondria-dependent signaling pathways. Anticancer Res. 2016;36(11):6031–42.
Dong X, Li JC, Jiang YY, Xia MY, Tashiro S, Onodera S, Ikejima T. p38-NF-kappaB-promoted mitochondria-associated apoptosis and G2/M cell cycle arrest in norcantharidin-treated HeLa cells. J Asian Nat Prod Res. 2012;14(11):1008–19.
Lv H, Li Y, Du H, Fang J, Music X, Zhang J. The artificial compound norcantharidin induced apoptosis in mantle cell lymphoma in vivo and in vitro by means of the PI3K-Akt-NF-kappa B signaling pathway. Evid Based mostly Complement Altern Med. 2013;2013:461487.
Liu XH, Blazsek I, Comisso M, Legras S, Marion S, Quittet P, Anjo A, Wang GS, Misset JL. Results of norcantharidin, a protein phosphatase type-2A inhibitor, on the expansion of regular and malignant haemopoietic cells. Eur J Most cancers. 1995;31A(6):953–63.
Shou LM, Zhang QY, Li W, Xie X, Chen Ok, Lian L, Li ZY, Gong FR, Dai KS, Mao YX, et al. Cantharidin and norcantharidin inhibit the flexibility of MCF-7 cells to stick to platelets by way of protein kinase C pathway-dependent downregulation of alpha2 integrin. Oncol Rep. 2013;30(3):1059–66.
Chen YJ, Chang WM, Liu YW, Lee CY, Jang YH, Kuo CD, Liao HF. A small-molecule metastasis inhibitor, norcantharidin, downregulates matrix metalloproteinase-9 expression by inhibiting Sp1 transcriptional exercise in colorectal most cancers cells. Chem Biol Work together. 2009;181(3):440–6.
Guo J, Wu Y, Yang L, Du J, Gong Ok, Chen W, Dai J, Li X, Xi S. Repression of YAP by NCTD disrupts NSCLC development. Oncotarget. 2017;8(2):2307–19.
Peng C, Li Z, Niu Z, Niu W, Xu Z, Gao H, Niu W, Wang J, He Z, Gao C, et al. Norcantharidin suppresses colon most cancers cell epithelial-mesenchymal transition by inhibiting the alphavbeta6-ERK-Ets1 signaling pathway. Sci Rep. 2016;6:20500.
Zhang L, Ji Q, Liu X, Chen X, Chen Z, Qiu Y, Solar J, Cai J, Zhu H, Li Q. Norcantharidin inhibits tumor angiogenesis by way of blocking VEGFR2/MEK/ERK signaling pathways. Most cancers Sci. 2013;104(5):604–10.
Zhang JT, Fan YZ, Chen CQ, Zhao ZM, Solar W. Norcantharidin: a possible antiangiogenic agent for gallbladder cancers in vitro and in vivo. Int J Oncol. 2012;40(5):1501–14.
Wang Z, You D, Lu M, He Y, Yan S. Inhibitory impact of norcantharidin on melanoma tumor development and vasculogenic mimicry by suppressing MMP-2 expression. Oncol Lett. 2017;13(3):1660–4.
Wang H, Solar W, Zhang WZ, Ge CY, Zhang JT, Liu ZY, Fan YZ. Inhibition of tumor vasculogenic mimicry and prolongation of host survival in extremely aggressive gallbladder cancers by norcantharidin by way of blocking the ephrin kind a receptor 2/focal adhesion kinase/paxillin signaling pathway. PLoS ONE. 2014;9(5):e96982.
Zhu W, Solar W, Zhang JT, Liu ZY, Li XP, Fan YZ. Norcantharidin enhances TIMP2 antivasculogenic mimicry exercise for human gallbladder cancers by means of downregulating MMP2 and MT1MMP. Int J Oncol. 2015;46(2):627–40.
Li XP, Jing W, Solar JJ, Liu ZY, Zhang JT, Solar W, Zhu W, Fan YZ. A possible small-molecule artificial antilymphangiogenic agent norcantharidin inhibits tumor development and lymphangiogenesis of human colonic adenocarcinomas by means of blocking VEGF-A,-C,-D/VEGFR-2,-3 “multi-points priming” mechanisms in vitro and in vivo. BMC Most cancers. 2015;15:527.
Chen YJ, Kuo CD, Chen SH, Chen WJ, Huang WC, Chao KS, Liao HF. Small-molecule artificial compound norcantharidin reverses multi-drug resistance by regulating sonic hedgehog signaling in human breast most cancers cells. PLoS ONE. 2012;7(5):e37006.
Zhang S, Li G, Ma X, Wang Y, Liu G, Feng L, Zhao Y, Zhang G, Wu Y, Ye X, et al. Norcantharidin enhances ABT-737-induced apoptosis in hepatocellular carcinoma cells by transcriptional repression of Mcl-1. Cell Sign. 2012;24(9):1803–9.
Wu H, Fan F, Liu Z, Shen C, Wang A, Lu Y. Norcantharidin mixed with EGFR-TKIs overcomes HGF-induced resistance to EGFR-TKIs in EGFR mutant lung most cancers cells by way of inhibition of Met/PI3k/Akt pathway. Most cancers Chemother Pharmacol. 2015;76(2):307–15.
Mo L, Zhang X, Shi X, Wei L, Zheng D, Li H, Gao J, Li J, Hu Z. Norcantharidin enhances antitumor immunity of GM-CSF prostate most cancers cells vaccine by inducing apoptosis of regulatory T cells. Most cancers Sci. 2018;109(7):2109–18.
Zhao Q, Qian Y, Li R, Tan B, Han H, Liu M, Qian M, Du B. Norcantharidin facilitates LPS-mediated immune responses by up-regulation of AKT/NF-kappaB signaling in macrophages. PLoS ONE. 2012;7(9):e44956.
Li Y, Chi J, Liu W, Han B. Examine on power toxicity of chitosan-based norcantharidin sustained-release drug supply system. Chin J Mar Medication. 2017;36(5):33–41.
Fan X, Yu R, Dong R, Luo G, Ma Z. Toxicity of cantharidin and norcantharidin in mice. Chin J Exp Tradit Med Formulae. 2017;23(15):118–23.
Martinez-Razo G, Dominguez-Lopez ML, de la Rosa JM, Fabila-Bustos DA, Reyes-Maldonado E, Conde-Vazquez E, Vega-Lopez A. Norcantharidin toxicity profile: an in vivo murine examine. Naunyn Schmiedebergs Arch Pharmacol. 2022.
Mehlen P, Puisieux A. Metastasis: a query of life or dying. Nat Rev Most cancers. 2006;6(6):449–58.
Park CG, Hartl CA, Schmid D, Carmona EM, Kim HJ, Goldberg MS. Prolonged launch of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci Transl Med. 2018;10(433):eaar1916.
Wang H, Jin Y, Tan Y, Zhu H, Huo W, Niu P, Li Z, Zhang J, Liang XJ, Yang X. Picture-responsive hydrogel facilitates diet deprivation by an ambidextrous method for stopping most cancers recurrence and metastasis. Biomaterials. 2021;275:120992.
Tan B, Wu Y, Wu Y, Shi Ok, Han R, Li Y, Qian Z, Liao J. Curcumin-microsphere/IR820 hybrid bifunctional hydrogels for in situ osteosarcoma chemo-co-thermal remedy and bone reconstruction. ACS Appl Mater Interfaces. 2021;13(27):31542–53.
Zhang J, Chen C, Li A, Jing W, Solar P, Huang X, Liu Y, Zhang S, Du W, Zhang R, et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat Nanotechnol. 2021;16(5):538–48.
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical functions. J Management Launch. 2020;324:505–21.
Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, Ji X, Xie T, Farokhzad OC, Tao W. Germanene-based theranostic supplies for surgical adjuvant therapy: inhibiting tumor recurrence and wound an infection. Matter. 2020;3(1):127–44.
Yan X, Solar T, Music Y, Peng W, Xu Y, Luo G, Li M, Chen S, Fang WW, Dong L, et al. In situ thermal-responsive magnetic hydrogel for multidisciplinary remedy of hepatocellular carcinoma. Nano Lett. 2022;22(6):2251–60.
Guo R, Zhang P, Liu J, Xie R, Wang L, Cai L, Qiu X, Sang H. NIR responsive injectable nanocomposite thermogel system towards osteosarcoma recurrence. Macromol Fast Commun. 2022;43(17):e2200255.
Zhang Y, Tian S, Huang L, Li Y, Lu Y, Li H, Chen G, Meng F, Liu GL, Yang X, et al. Reactive oxygen species-responsive and Raman-traceable hydrogel combining photodynamic and immune remedy for postsurgical most cancers therapy. Nat Commun. 2022;13(1):4553.
Gao F, Xie W, Miao Y, Wang D, Guo Z, Ghosal A, Li Y, Wei Y, Feng SS, Zhao L, et al. Magnetic hydrogel with optimally adaptive features for breast most cancers recurrence prevention. Adv Healthc Mater. 2019;8(14):e1900203.
Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional polymeric nanogels for biomedical functions. Gels. 2021;7(4):228.
Zhang C, Solar W, Wang Y, Xu F, Qu J, Xia J, Shen M, Shi X. Gd-/CuS-loaded useful nanogels for MR/PA imaging-guided tumor-targeted photothermal remedy. ACS Appl Mater Interfaces. 2020;12(8):9107–17.
Chen Z, Chen R, Zhao C, Quan Z, Zhu H, Wang L, Bu Q, He Y, He H. A novel medically imageable clever cellulose nanofibril-based injectable hydrogel for the chemo-photothermal remedy of tumors. Chem Eng J. 2022;431:133255.
Zhu Y, Jia J, Zhao G, Huang X, Wang L, Zhang Y, Zhang L, Konduru N, Xie J, Yu R, et al. Multi-responsive nanofibers composite gel for native drug supply to inhibit recurrence of glioma after operation. J Nanobiotechnol. 2021;19(1):198.
Wu Y, Yao Y, Zhang J, Gui H, Liu J, Liu J. Tumor-targeted injectable double-network hydrogel for prevention of breast most cancers recurrence and wound an infection by way of synergistic photothermal and brachytherapy. Adv Sci (Weinh). 2022;9(24):e2200681.
Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, Wang J, Wen D, Zhang Y, Lu Y, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical most cancers therapy. Nat Nanotechnol. 2019;14(1):89–97.
Niu Y, Wu D, Dong W, Tang X, Cai C. Analysis progress on new preparation of norcantharidin. Chin Pharm J. 2013;48(9):663–7.