Tuesday, December 6, 2022
HomeNanotechnologyVersatile full-colour nanopainting enabled by a pixelated plasmonic metasurface

Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface


  • Kristensen, A. et al. Plasmonic color era. Nat. Rev. Mater. 2, 16088 (2016).

    Article 

    Google Scholar
     

  • Tune, M. et al. Colours with plasmonic nanostructures: a full-spectrum evaluate. Appl. Phys. Rev. 6, 041308 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Barnes, W. L., Dereux, A. & Ebbesen, T. W. Floor plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Luo, X., Tsai, D., Gu, M. & Hong, M. Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and vitality conversion. Chem. Soc. Rev. 48, 2458–2494 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., van de Groep, J., Talin, A. A. & Brongersma, M. L. Dynamic tuning of hole plasmon resonances utilizing a solid-state electrochromic system. Nano Lett. 19, 7988–7995 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chowdhury, S. N. et al. Lithography-free plasmonic colour printing with femtosecond laser on semicontinuous silver movies. ACS Photon. 8, 521–530 (2020).

    Article 

    Google Scholar
     

  • Huang, Y.-W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122–3127 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ellenbogen, T., Web optimization, Okay. & Crozier, Okay. B. Chromatic plasmonic polarizers for lively seen colour filtering and polarimetry. Nano Lett. 12, 1026–1031 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Neubrech, F., Duan, X. & Liu, N. Dynamic plasmonic colour era enabled by practical supplies. Sci. Adv. 6, eabc2709 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Duan, X., Kamin, S. & Liu, N. Dynamic plasmonic color show. Nat. Commun. 8, 14606 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X., Vannahme, C., Højlund-Nielsen, E., Mortensen, N. A. & Kristensen, A. Plasmonic color laser printing. Nat. Nanotechnol. 11, 325–329 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xue, J. et al. Perturbative countersurveillance metaoptics with compound nanosieves. Gentle Sci. Appl. 8, 101 (2019).

    Article 

    Google Scholar
     

  • Yang, Z., Ji, C., Cui, Q. & Guo, L. J. Excessive-purity hybrid structural colours by enhancing optical absorption of natural dyes in resonant cavity. Adv. Choose. Mater. 8, 2000317 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Clausen, J. S. et al. Plasmonic metasurfaces for coloration of plastic shopper merchandise. Nano Lett. 14, 4499–4504 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Esposito, M. et al. Symmetry breaking in oligomer floor plasmon lattice resonances. Nano Lett. 19, 1922–1930 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Joo, W.-J. et al. Metasurface-driven OLED shows past 10,000 pixels per inch. Science 370, 459–463 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, Okay. et al. Printing color on the optical diffraction restrict. Nat. Nanotechnol. 7, 557–561 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Xu, T., Wu, Y.-Okay., Luo, X. & Guo, L. J. Plasmonic nanoresonators for high-resolution color filtering and spectral imaging. Nat. Commun. 1, 59 (2010).

    Article 

    Google Scholar
     

  • Wang, H. et al. Full colour era utilizing silver tandem nanodisks. ACS Nano 11, 4419–4427 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rezaei, S. D. et al. Large-gamut plasmonic colour palettes with fixed subwavelength decision. ACS Nano 13, 3580–3588 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, A. S., Pors, A., Albrektsen, O. & Bozhevolnyi, S. I. Subwavelength plasmonic colour printing protected for ambient use. Nano Lett. 14, 783–787 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Goh, X. M. et al. Three-dimensional plasmonic stereoscopic prints in full color. Nat. Commun. 5, 5361 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tan, S. J. et al. Plasmonic colour palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shaltout, A. M., Kim, J., Boltasseva, A., Shalaev, V. M. & Kildishev, A. V. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nat. Commun. 9, 2673 (2018).

    Article 

    Google Scholar
     

  • Hail, C. U., Schnoering, G., Damak, M., Poulikakos, D. & Eghlidi, H. A plasmonic painter’s technique of colour mixing for a steady purple–inexperienced–blue palette. ACS Nano 14, 1783–1791 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. S. et al. Ultrahigh decision and colour gamut with scattering-reducing transmissive pixels. Nat. Commun. 10, 4782 (2019).

    Article 

    Google Scholar
     

  • Wu, Y.-Okay., Hollowell, A. E., Zhang, C. & Guo, L. J. Angle-insensitive structural colors primarily based on metallic nanocavities and colored pixels past the diffraction restrict. Sci. Rep. 3, 1194 (2013).

    Article 

    Google Scholar
     

  • Proust, J., Bedu, F., Gallas, B., Ozerov, I. & Bonod, N. All-dielectric coloured metasurfaces with silicon Mie resonators. ACS Nano 10, 7761–7767 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q., Wu, T., van de Groep, J., Lalanne, P. & Brongersma, M. L. Structural colour from a coupled nanowire pair past the bonding and antibonding mannequin. Optica 8, 464–470 (2021).

    Article 

    Google Scholar
     

  • Dong, Z. et al. Printing past sRGB colour gamut by mimicking silicon nanostructures in free-space. Nano Lett. 17, 7620–7628 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Solar, S. et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano 11, 4445–4452 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Huo, P. et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 7, 1171 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koshelev, Okay. & Kivshar, Y. Dielectric resonant metaphotonics. ACS Photon. 8, 102–112 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bao, Y. et al. Coherent pixel design of metasurfaces for multidimensional optical management of a number of printing-image switching and encoding. Adv. Funct. Mater. 28, 1805306 (2018).

    Article 

    Google Scholar
     

  • Zhou, J. et al. Visualizing Mie resonances in low-index dielectric nanoparticles. Phys. Rev. Lett. 120, 253902 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, W. et al. All-dielectric metasurface for high-performance structural colour. Nat. Commun. 11, 1864 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, B. et al. Ultrahighly saturated structural colours enhanced by multipolar-modulated metasurfaces. Nano Lett. 19, 4221–4228 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. H. et al. Structural colours enabled by lattice resonance on silicon nitride metasurfaces. ACS Nano 14, 5678–5685 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bao, Y. et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue–saturation–brightness management. Gentle Sci. Appl. 8, 95 (2019).

    Article 

    Google Scholar
     

  • Jiang, M. et al. Patterned resist on flat silver attaining saturated plasmonic colours with sub-20-nm spectral linewidth. Mater. Immediately 35, 99–105 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Wu, S. et al. Enhanced rotation of the polarization of a lightweight beam transmitted by means of a silver movie with an array of perforated s-shaped holes. Phys. Rev. Lett. 110, 207401 (2013).

    Article 

    Google Scholar
     

  • Kelf, T. A. et al. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B 74, 245415 (2006).

    Article 

    Google Scholar
     

  • Viguerie, L., Walter, P., Laval, E., Mottin, B. & Sole, V. A. Revealing the sfumato strategy of Leonardo da Vinci by X-ray fluorescence spectroscopy. Angew. Chem. Int. Ed. 49, 6125–6128 (2010).

    Article 

    Google Scholar
     

  • Kudyshev, Z. A., Kildishev, A. V., Shalaev, V. M. & Boltasseva, A. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 7, 021407 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, W. et al. Deep studying for the design of photonic constructions. Nat. Photon. 15, 77–90 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wiecha, P. R., Lecestre, A., Mallet, N. & Larrieu, G. Pushing the boundaries of optical info storage utilizing deep studying. Nat. Nanotechnol. 14, 237–244 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Z. et al. Schrödinger’s purple pixel by quasi-bound-states-in-the-continuum. Sci. Adv. 8, eabm4512 (2022).

    Article 
    CAS 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments