IPCC Local weather Change 2022: Mitigation of Local weather Change. Working Group III Contribution to the IPCC Sixth Evaluation Report (2022).
A Analysis Technique for Ocean-based Carbon Dioxide Removing and Sequestration (Nationwide Academies of Sciences, Engineering and Drugs, 2021).
Greenhouse Fuel Removing (Royal Society, 2018); https://royalsociety.org/topics-policy/tasks/greenhouse-gas-removal/
Williamson, P. et al. Ocean fertilization for geoengineering: a overview of effectiveness, environmental impacts and rising governance. Course of Saf. Environ. Prot. 90, 475–488 (2012).
Güssow, Okay., Proelss, A., Oschlies, A., Rehdanz, Okay. & Rickels, W. Ocean iron fertilization: why additional analysis is required. Mar. Coverage 34, 911–918 (2010).
Yoon, J.-E. et al. Evaluations and syntheses: ocean iron fertilization experiments—previous, current, and future seeking to a future Korean Iron Fertilization Experiment within the Southern Ocean (KIFES) challenge. Biogeosciences 15, 5847–5889 (2018).
Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).
Boyd, P. W. et al. A mesoscale phytoplankton bloom within the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).
Boyd, P. W. Implications of large-scale iron fertilization of the oceans: introduction and synthesis. Mar. Ecol. Prog. Ser. 364, 213–218 (2008).
Pollard, R. T. et al. Southern Ocean deep-water carbon export enhanced by pure iron fertilization. Nature 457, 577–580 (2009).
Xiao, Okay.-Q., Moore, O. W., Babakhani, P., Curti, L. & Peacock, C. L. Mineralogical management on methylotrophic methanogenesis and implications for cryptic methane biking in marine floor sediment. Nat. Commun. 13, 1–9 (2022).
Langmann, B., Zakšek, Okay., Hort, M. & Duggen, S. Volcanic ash as fertiliser for the floor ocean. Atmos. Chem. Phys. 10, 3891–3899 (2010).
Homoky, W. B. et al. Iron colloids dominate sedimentary provide to the ocean inside. Proc. Natl Acad. Sci. USA 118, e2016078118 (2021).
Raiswell, R. & Canfield, D. E. The iron biogeochemical cycle previous and current. Geochem. Perspect. 1, 1–2 (2012).
Raiswell, R. Iceberg-hosted nanoparticulate Fe within the Southern Ocean: mineralogy, origin, dissolution kinetics and supply of bioavailable Fe. Deep Sea Res. 2 Prime. Stud. Oceanogr. 58, 1364–1375 (2011).
Saeed, H. et al. Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. Sci. Rep. 8, 1–14 (2018).
Hochella, M. F. et al. Nanominerals, mineral nanoparticles, and Earth methods. Science 319, 1631–1635 (2008).
Hochella, M. F. et al. Pure, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019).
Fitzsimmons, J. N. et al. Iron persistence in a distal hydrothermal plume supported by dissolved–particulate alternate. Nat. Geosci. 10, 195–201 (2017).
Phenrat, T. & Lowry, G. V. Nanoscale Zerovalent Iron Particles for Environmental Restoration (Springer, 2019).
O’Carroll, D., Sleep, B., Krol, M., Boparai, H. & Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated website remediation. Adv. Water Res. 51, 104–122 (2013).
Park, C. M., Wang, D. & Su, C. in Handbook of Nanomaterials for Industrial Purposes (ed Hussain, C. M.) 849–882 (Elsevier, 2018).
Lowry, G. V., Avellan, A. & Gilbertson, L. M. Alternatives and challenges for nanotechnology within the agri-tech revolution. Nat. Nanotechnol. 14, 517 (2019).
Sabo‐Attwood, T., Apul, O. G., Bisesi, J. H. Jr, Kane, A. S. & Saleh, N. B. Nano‐scale functions in aquaculture: alternatives for improved manufacturing and illness management. J. Fish. Dis. 44, 359–370 (2021).
Moges, F. D., Patel, P., Parashar, S. Okay. S. & Das, B. Mechanistic insights into various nano-based methods for aquaculture enhancement: a holistic overview. Aquaculture 519, 734770 (2020).
Ponton, D. E. et al. Three-layered silver nanoparticles to hint dissolution and affiliation to a inexperienced alga. Nanotoxicology 13, 1149–1160 (2019).
Wells, M. L. & Mayer, L. M. The phttoconversion of colloidal iron oxyhydroxides in seawater. Deep Sea Res. A 38, 1379–1395 (1991).
Bowie, A. R. et al. The destiny of added iron throughout a mesoscale fertilisation experiment within the Southern Ocean. Deep Sea Res. 2 Prime. Stud. Oceanogr. 48, 2703–2743 (2001).
Coale, Okay. H. et al. IronEx-I, an in situ iron-enrichment experiment: experimental design, implementation and outcomes. Deep Sea Res. 2 Prime. Stud. Oceanogr. 45, 919–945 (1998).
Hu, Y.-B. & Li, X.-Y. Affect of a skinny aluminum hydroxide coating layer on the suspension stability and reductive reactivity of nanoscale zero-valent iron. Appl. Catal. B 226, 554–564 (2018).
Kadar, E., Rooks, P., Lakey, C. & White, D. A. The impact of engineered iron nanoparticles on development and metabolic standing of marine microalgae cultures. Sci. Complete Environ. 439, 8–17 (2012).
Deng, X.-Y. et al. Organic results of TiO2 and CeO2 nanoparticles on the expansion, photosynthetic exercise, and mobile elements of a marine diatom Phaeodactylum tricornutum. Sci. Complete Environ. 575, 87–96 (2017).
Sendra, M., Yeste, P. M., Moreno-Garrido, I., Gatica, J. M. & Blasco, J. CeO2 NPs, poisonous or protecting to phytoplankton? Cost of nanoparticles and cell wall as elements which trigger adjustments in cell complexity. Sci. Complete Environ. 590, 304–315 (2017).
Chen, F. et al. Algae response to engineered nanoparticles: present understanding, mechanisms and implications. Environ. Sci.: Nano 6, 1026–1042 (2019).
Huang, X., Wei, L., Huang, Z. & Yan, J. Impact of excessive ferric ion concentrations on complete lipids and lipid traits of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis. J. Appl. Phycol. 26, 105–114 (2014).
Rajabi Islami, H. & Assareh, R. Impact of various iron concentrations on development, lipid accumulation, and fatty acid profile for biodiesel manufacturing from Tetradesmus obliquus. J. Appl. Phycol. 31, 3421–3432 (2019).
Graca, B., Zgrundo, A., Zakrzewska, D., Rzodkiewicz, M. & Karczewski, J. Origin and destiny of nanoparticles in marine water—preliminary outcomes. Chemosphere 206, 359–368 (2018).
Wells, M. L. & Goldberg, E. D. Incidence of small colloids in sea water. Nature 353, 342–344 (1991).
Boyd, P. W. et al. The decline and destiny of an iron-induced subarctic phytoplankton bloom. Nature 428, 549 (2004).
Nguyen, M. Okay., Moon, J.-Y., Bui, V. Okay. H., Oh, Y.-Okay. & Lee, Y.-C. Current superior functions of nanomaterials in microalgae biorefinery. Algal Res. 41, 101522 (2019).
Model, L. E., Sunda, W. G. & Guillard, R. R. L. Limitation of marine phytoplankton reproductive charges by zinc, manganese, and iron. Limnol. Oceanogr. 28, 1182–1198 (1983).
Zhou, L., Tan, Y., Huang, L., Fortin, C. & Campbell, P. G. C. Aluminum results on marine phytoplankton: implications for a revised iron speculation (iron–aluminum speculation). Biogeochemistry 139, 123–137 (2018).
Xia, T. et al. Comparability of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles primarily based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008).
Sicard, C. et al. CeO2 nanoparticles for the safety of photosynthetic organisms immobilized in silica gels. Chem. Mater. 23, 1374–1378 (2011).
Sommer, U., Charalampous, E., Genitsaris, S. & Moustaka-Gouni, M. Advantages, prices and taxonomic distribution of marine phytoplankton physique measurement. J. Plankton Res. 39, 494–508 (2017).
Xiong, W. et al. Prevention of cyanobacterial blooms utilizing nanosilica: a biomineralization-inspired technique. Environ. Sci. Technol. 51, 12717–12726 (2017).
Chiu, M.-H. et al. Impact of engineered nanoparticles on exopolymeric substances launch from marine phytoplankton. Nanoscale Res. Lett. 12, 620 (2017).
Martin, P. et al. Iron fertilization enhanced web neighborhood manufacturing however not downward particle flux through the Southern Ocean iron fertilization experiment LOHAFEX. Glob. Biogeochem. Cycles 27, 871–881 (2013).
Laglera, L. M. et al. Iron partitioning throughout LOHAFEX: copepod grazing as a serious driver for iron recycling within the Southern Ocean. Mar. Chem. 196, 148–161 (2017).
Simonin, M. et al. Engineered nanoparticles work together with vitamins to accentuate eutrophication in a wetland ecosystem experiment. Ecol. Appl. 28, 1435–1449 (2018).
Pakrashi, S., Dalai, S., Chandrasekaran, N. & Mukherjee, A. Trophic switch potential of aluminium oxide nanoparticles utilizing consultant major producer (Chlorella ellipsoides) and a major shopper (Ceriodaphnia dubia). Aquat. Toxicol. 152, 74–81 (2014).
Baalousha, M. Impact of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics. NanoImpact 6, 55–68 (2017).
Henson, S. A. et al. Unsure response of ocean organic carbon export in a altering world. Nat. Geosci. 15, 248–254 (2022).
Kozma, G., Rónavári, A., Kónya, Z. & Kukovecz, A. Environmentally benign synthesis strategies of zero-valent iron nanoparticles. ACS Maintain. Chem. Eng. 4, 291–297 (2016).
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration within the ocean. Nature 568, 327–335 (2019).
de Baar, H. J. W., Gerringa, L. J. A., Laan, P. & Timmermans, Okay. R. Effectivity of carbon removing per added iron in ocean iron fertilization. Mar. Ecol. Prog. Ser. 364, 269–282 (2008).
Aumont, O. & Bopp, L. Globalizing outcomes from ocean in situ iron fertilization research. International Biogeochem. Cycles 20, 1–15 (2006).
Harrison, D. P. A way for estimating the fee to sequester carbon dioxide by delivering iron to the ocean. Int. J. Glob. Heat. 5, 231–254 (2013).
Hansel, C. M. & Diaz, J. M. Manufacturing of extracellular reactive oxygen species by marine biota. Annu. Rev. Mar. Sci. 13, 177–200 (2021).
Rezayian, M., Niknam, V. & Ebrahimzadeh, H. Oxidative injury and antioxidative system in algae. Toxicol. Rep. 6, 1309–1313 (2019).
Worthen, A. J., Tran, V., Cornell, Okay. A., Truskett, T. M. & Johnston, Okay. P. Steric stabilization of nanoparticles with grafted low molecular weight ligands in extremely concentrated brines together with divalent ions. Gentle Matter 12, 2025–2039 (2016).
Bagaria, H. G. et al. Stabilization of iron oxide nanoparticles in excessive sodium and calcium brine at excessive temperatures with adsorbed sulfonated copolymers. Langmuir 29, 3195–3206 (2013).
Wang, H., Adeleye, A. S., Huang, Y., Li, F. & Keller, A. A. Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv. Colloid Interface Sci. 226, 24–36 (2015).
Cheng, Q. et al. Enhanced excretion of extracellular polymeric substances related to nonylphenol tolerance in Dictyosphaerium sp. J. Hazard. Mater. 395, 122644 (2020).
Oschlies, A., Koeve, W., Rickels, W. & Rehdanz, Okay. Negative effects and accounting points of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences (BG) 7, 4017–4035 (2010).
GESAMP. Excessive Stage Evaluation of a Extensive Vary of Proposed Marine Geoengineering Strategies, Vol 98 (INTL. MAR. ORG., 2019).
Freestone, D. & Rayfuse, R. Ocean iron fertilization and worldwide legislation. Mar. Ecol. Prog. Ser. 364, 227–233 (2008).
Alvarez, P. J. J., Chan, C. Okay., Elimelech, M., Halas, N. J. & Villagrán, D. Rising alternatives for nanotechnology to boost water safety. Nat. Nanotechnol. 13, 634–641 (2018).
Ma, S., Zhou, Okay., Yang, Okay. & Lin, D. Heteroagglomeration of oxide nanoparticles with algal cells: results of particle kind, ionic power and pH. Environ. Sci. Technol. 49, 932–939 (2015).
Goedkoop, M., De Schryver, A., Oele, M., Durksz, S. & de Roest, D. Introduction to LCA with SimaPro 7 (PRé Consultants, 2008).