Sunday, October 15, 2023
HomeNanotechnologyPotential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric carbon...

Potential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric carbon dioxide removing


  • IPCC Local weather Change 2022: Mitigation of Local weather Change. Working Group III Contribution to the IPCC Sixth Evaluation Report (2022).

  • A Analysis Technique for Ocean-based Carbon Dioxide Removing and Sequestration (Nationwide Academies of Sciences, Engineering and Drugs, 2021).

  • Greenhouse Fuel Removing (Royal Society, 2018); https://royalsociety.org/topics-policy/tasks/greenhouse-gas-removal/

  • Williamson, P. et al. Ocean fertilization for geoengineering: a overview of effectiveness, environmental impacts and rising governance. Course of Saf. Environ. Prot. 90, 475–488 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Güssow, Okay., Proelss, A., Oschlies, A., Rehdanz, Okay. & Rickels, W. Ocean iron fertilization: why additional analysis is required. Mar. Coverage 34, 911–918 (2010).

    Article 

    Google Scholar
     

  • Yoon, J.-E. et al. Evaluations and syntheses: ocean iron fertilization experiments—previous, current, and future seeking to a future Korean Iron Fertilization Experiment within the Southern Ocean (KIFES) challenge. Biogeosciences 15, 5847–5889 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, P. W. et al. A mesoscale phytoplankton bloom within the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, P. W. Implications of large-scale iron fertilization of the oceans: introduction and synthesis. Mar. Ecol. Prog. Ser. 364, 213–218 (2008).

    Article 

    Google Scholar
     

  • Pollard, R. T. et al. Southern Ocean deep-water carbon export enhanced by pure iron fertilization. Nature 457, 577–580 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, Okay.-Q., Moore, O. W., Babakhani, P., Curti, L. & Peacock, C. L. Mineralogical management on methylotrophic methanogenesis and implications for cryptic methane biking in marine floor sediment. Nat. Commun. 13, 1–9 (2022).

    Article 

    Google Scholar
     

  • Langmann, B., Zakšek, Okay., Hort, M. & Duggen, S. Volcanic ash as fertiliser for the floor ocean. Atmos. Chem. Phys. 10, 3891–3899 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Homoky, W. B. et al. Iron colloids dominate sedimentary provide to the ocean inside. Proc. Natl Acad. Sci. USA 118, e2016078118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Raiswell, R. & Canfield, D. E. The iron biogeochemical cycle previous and current. Geochem. Perspect. 1, 1–2 (2012).

    Article 

    Google Scholar
     

  • Raiswell, R. Iceberg-hosted nanoparticulate Fe within the Southern Ocean: mineralogy, origin, dissolution kinetics and supply of bioavailable Fe. Deep Sea Res. 2 Prime. Stud. Oceanogr. 58, 1364–1375 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Saeed, H. et al. Regulation of phosphorus bioavailability by iron nanoparticles in a monomictic lake. Sci. Rep. 8, 1–14 (2018).

    Article 

    Google Scholar
     

  • Hochella, M. F. et al. Nanominerals, mineral nanoparticles, and Earth methods. Science 319, 1631–1635 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hochella, M. F. et al. Pure, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, eaau8299 (2019).

    Article 

    Google Scholar
     

  • Fitzsimmons, J. N. et al. Iron persistence in a distal hydrothermal plume supported by dissolved–particulate alternate. Nat. Geosci. 10, 195–201 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Phenrat, T. & Lowry, G. V. Nanoscale Zerovalent Iron Particles for Environmental Restoration (Springer, 2019).

  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H. & Kocur, C. Nanoscale zero valent iron and bimetallic particles for contaminated website remediation. Adv. Water Res. 51, 104–122 (2013).

    Article 

    Google Scholar
     

  • Park, C. M., Wang, D. & Su, C. in Handbook of Nanomaterials for Industrial Purposes (ed Hussain, C. M.) 849–882 (Elsevier, 2018).

  • Lowry, G. V., Avellan, A. & Gilbertson, L. M. Alternatives and challenges for nanotechnology within the agri-tech revolution. Nat. Nanotechnol. 14, 517 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sabo‐Attwood, T., Apul, O. G., Bisesi, J. H. Jr, Kane, A. S. & Saleh, N. B. Nano‐scale functions in aquaculture: alternatives for improved manufacturing and illness management. J. Fish. Dis. 44, 359–370 (2021).

    Article 

    Google Scholar
     

  • Moges, F. D., Patel, P., Parashar, S. Okay. S. & Das, B. Mechanistic insights into various nano-based methods for aquaculture enhancement: a holistic overview. Aquaculture 519, 734770 (2020).

    Article 

    Google Scholar
     

  • Ponton, D. E. et al. Three-layered silver nanoparticles to hint dissolution and affiliation to a inexperienced alga. Nanotoxicology 13, 1149–1160 (2019).

    Article 

    Google Scholar
     

  • Wells, M. L. & Mayer, L. M. The phttoconversion of colloidal iron oxyhydroxides in seawater. Deep Sea Res. A 38, 1379–1395 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Bowie, A. R. et al. The destiny of added iron throughout a mesoscale fertilisation experiment within the Southern Ocean. Deep Sea Res. 2 Prime. Stud. Oceanogr. 48, 2703–2743 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Coale, Okay. H. et al. IronEx-I, an in situ iron-enrichment experiment: experimental design, implementation and outcomes. Deep Sea Res. 2 Prime. Stud. Oceanogr. 45, 919–945 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Y.-B. & Li, X.-Y. Affect of a skinny aluminum hydroxide coating layer on the suspension stability and reductive reactivity of nanoscale zero-valent iron. Appl. Catal. B 226, 554–564 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kadar, E., Rooks, P., Lakey, C. & White, D. A. The impact of engineered iron nanoparticles on development and metabolic standing of marine microalgae cultures. Sci. Complete Environ. 439, 8–17 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Deng, X.-Y. et al. Organic results of TiO2 and CeO2 nanoparticles on the expansion, photosynthetic exercise, and mobile elements of a marine diatom Phaeodactylum tricornutum. Sci. Complete Environ. 575, 87–96 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sendra, M., Yeste, P. M., Moreno-Garrido, I., Gatica, J. M. & Blasco, J. CeO2 NPs, poisonous or protecting to phytoplankton? Cost of nanoparticles and cell wall as elements which trigger adjustments in cell complexity. Sci. Complete Environ. 590, 304–315 (2017).

    Article 

    Google Scholar
     

  • Chen, F. et al. Algae response to engineered nanoparticles: present understanding, mechanisms and implications. Environ. Sci.: Nano 6, 1026–1042 (2019).

    CAS 

    Google Scholar
     

  • Huang, X., Wei, L., Huang, Z. & Yan, J. Impact of excessive ferric ion concentrations on complete lipids and lipid traits of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis. J. Appl. Phycol. 26, 105–114 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rajabi Islami, H. & Assareh, R. Impact of various iron concentrations on development, lipid accumulation, and fatty acid profile for biodiesel manufacturing from Tetradesmus obliquus. J. Appl. Phycol. 31, 3421–3432 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Graca, B., Zgrundo, A., Zakrzewska, D., Rzodkiewicz, M. & Karczewski, J. Origin and destiny of nanoparticles in marine water—preliminary outcomes. Chemosphere 206, 359–368 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wells, M. L. & Goldberg, E. D. Incidence of small colloids in sea water. Nature 353, 342–344 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, P. W. et al. The decline and destiny of an iron-induced subarctic phytoplankton bloom. Nature 428, 549 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, M. Okay., Moon, J.-Y., Bui, V. Okay. H., Oh, Y.-Okay. & Lee, Y.-C. Current superior functions of nanomaterials in microalgae biorefinery. Algal Res. 41, 101522 (2019).

    Article 

    Google Scholar
     

  • Model, L. E., Sunda, W. G. & Guillard, R. R. L. Limitation of marine phytoplankton reproductive charges by zinc, manganese, and iron. Limnol. Oceanogr. 28, 1182–1198 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, L., Tan, Y., Huang, L., Fortin, C. & Campbell, P. G. C. Aluminum results on marine phytoplankton: implications for a revised iron speculation (iron–aluminum speculation). Biogeochemistry 139, 123–137 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xia, T. et al. Comparability of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles primarily based on dissolution and oxidative stress properties. ACS Nano 2, 2121–2134 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Sicard, C. et al. CeO2 nanoparticles for the safety of photosynthetic organisms immobilized in silica gels. Chem. Mater. 23, 1374–1378 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sommer, U., Charalampous, E., Genitsaris, S. & Moustaka-Gouni, M. Advantages, prices and taxonomic distribution of marine phytoplankton physique measurement. J. Plankton Res. 39, 494–508 (2017).

    CAS 

    Google Scholar
     

  • Xiong, W. et al. Prevention of cyanobacterial blooms utilizing nanosilica: a biomineralization-inspired technique. Environ. Sci. Technol. 51, 12717–12726 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chiu, M.-H. et al. Impact of engineered nanoparticles on exopolymeric substances launch from marine phytoplankton. Nanoscale Res. Lett. 12, 620 (2017).

    Article 

    Google Scholar
     

  • Martin, P. et al. Iron fertilization enhanced web neighborhood manufacturing however not downward particle flux through the Southern Ocean iron fertilization experiment LOHAFEX. Glob. Biogeochem. Cycles 27, 871–881 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Laglera, L. M. et al. Iron partitioning throughout LOHAFEX: copepod grazing as a serious driver for iron recycling within the Southern Ocean. Mar. Chem. 196, 148–161 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Simonin, M. et al. Engineered nanoparticles work together with vitamins to accentuate eutrophication in a wetland ecosystem experiment. Ecol. Appl. 28, 1435–1449 (2018).

    Article 

    Google Scholar
     

  • Pakrashi, S., Dalai, S., Chandrasekaran, N. & Mukherjee, A. Trophic switch potential of aluminium oxide nanoparticles utilizing consultant major producer (Chlorella ellipsoides) and a major shopper (Ceriodaphnia dubia). Aquat. Toxicol. 152, 74–81 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Baalousha, M. Impact of nanomaterial and media physicochemical properties on nanomaterial aggregation kinetics. NanoImpact 6, 55–68 (2017).

    Article 

    Google Scholar
     

  • Henson, S. A. et al. Unsure response of ocean organic carbon export in a altering world. Nat. Geosci. 15, 248–254 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kozma, G., Rónavári, A., Kónya, Z. & Kukovecz, A. Environmentally benign synthesis strategies of zero-valent iron nanoparticles. ACS Maintain. Chem. Eng. 4, 291–297 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration within the ocean. Nature 568, 327–335 (2019).

    Article 
    CAS 

    Google Scholar
     

  • de Baar, H. J. W., Gerringa, L. J. A., Laan, P. & Timmermans, Okay. R. Effectivity of carbon removing per added iron in ocean iron fertilization. Mar. Ecol. Prog. Ser. 364, 269–282 (2008).

    Article 

    Google Scholar
     

  • Aumont, O. & Bopp, L. Globalizing outcomes from ocean in situ iron fertilization research. International Biogeochem. Cycles 20, 1–15 (2006).

    Article 

    Google Scholar
     

  • Harrison, D. P. A way for estimating the fee to sequester carbon dioxide by delivering iron to the ocean. Int. J. Glob. Heat. 5, 231–254 (2013).

    Article 

    Google Scholar
     

  • Hansel, C. M. & Diaz, J. M. Manufacturing of extracellular reactive oxygen species by marine biota. Annu. Rev. Mar. Sci. 13, 177–200 (2021).

    Article 

    Google Scholar
     

  • Rezayian, M., Niknam, V. & Ebrahimzadeh, H. Oxidative injury and antioxidative system in algae. Toxicol. Rep. 6, 1309–1313 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Worthen, A. J., Tran, V., Cornell, Okay. A., Truskett, T. M. & Johnston, Okay. P. Steric stabilization of nanoparticles with grafted low molecular weight ligands in extremely concentrated brines together with divalent ions. Gentle Matter 12, 2025–2039 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bagaria, H. G. et al. Stabilization of iron oxide nanoparticles in excessive sodium and calcium brine at excessive temperatures with adsorbed sulfonated copolymers. Langmuir 29, 3195–3206 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Adeleye, A. S., Huang, Y., Li, F. & Keller, A. A. Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv. Colloid Interface Sci. 226, 24–36 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Q. et al. Enhanced excretion of extracellular polymeric substances related to nonylphenol tolerance in Dictyosphaerium sp. J. Hazard. Mater. 395, 122644 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Oschlies, A., Koeve, W., Rickels, W. & Rehdanz, Okay. Negative effects and accounting points of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences (BG) 7, 4017–4035 (2010).

    Article 
    CAS 

    Google Scholar
     

  • GESAMP. Excessive Stage Evaluation of a Extensive Vary of Proposed Marine Geoengineering Strategies, Vol 98 (INTL. MAR. ORG., 2019).

  • Freestone, D. & Rayfuse, R. Ocean iron fertilization and worldwide legislation. Mar. Ecol. Prog. Ser. 364, 227–233 (2008).

    Article 

    Google Scholar
     

  • Alvarez, P. J. J., Chan, C. Okay., Elimelech, M., Halas, N. J. & Villagrán, D. Rising alternatives for nanotechnology to boost water safety. Nat. Nanotechnol. 13, 634–641 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ma, S., Zhou, Okay., Yang, Okay. & Lin, D. Heteroagglomeration of oxide nanoparticles with algal cells: results of particle kind, ionic power and pH. Environ. Sci. Technol. 49, 932–939 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Goedkoop, M., De Schryver, A., Oele, M., Durksz, S. & de Roest, D. Introduction to LCA with SimaPro 7 (PRé Consultants, 2008).



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments