Saturday, October 14, 2023
HomeNanotechnologyA modular and self-adjuvanted multivalent vaccine platform based mostly on porcine circovirus...

A modular and self-adjuvanted multivalent vaccine platform based mostly on porcine circovirus virus-like nanoparticles | Journal of Nanobiotechnology


  • Lager KM, Buckley AC. Porcine anti-viral immunity: how necessary is it? Entrance Immunol. 2019;10:2258.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhakal S, Renukaradhya GJ. Nanoparticle-based vaccine improvement and analysis in opposition to viral infections in pigs. Vet Res. 2019;50:90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du T, Nan Y, Xiao S, Zhao Q, Zhou EM. Antiviral methods in opposition to PRRSV an infection. Traits Microbiol. 2017;25:968–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saade G, Deblanc C, Bougon J, Marois-Créhan C, Fablet C, Auray G, et al. Coinfections and their molecular penalties within the porcine respiratory tract. Vet Res. 2020;51:80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang W, Fu Z, Yin H, Han Q, Fan W, Wang F, et al. Macrophage polarization modulated by Porcine Circovirus Kind 2 facilitates bacterial coinfection. Entrance Immunol. 2021;12:688294.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blome S, Moß C, Reimann I, König P, Beer M. Classical swine fever vaccines-state-of-the-art. Vet Microbiol. 2017;206:10–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo Y, Li S, Solar Y, Qiu HJ. Classical swine fever in China: a minireview. Vet Microbiol. 2014;172:1–6.

    Article 
    PubMed 

    Google Scholar
     

  • Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interplay between Virus-Like particles (VLPs) and sample recognition receptors (PRRs) from dendritic cells (DCs): towards Higher Engineering of VLPs. Entrance Immunol. 2020;11:1100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao P, Zhu J, Mahalingam M, Batra H, Rao VB. Bacteriophage T4 nanoparticles for vaccine supply in opposition to infectious illnesses. Adv Drug Deliv Rev. 2019;145:57–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hills RA, Howarth M. Virus-like particles in opposition to infectious illness and most cancers: steerage for the nano-architect. Curr Opin Biotechnol. 2022;73:346–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersson AC, Schwerdtfeger M, Holst PJ. Virus-Like-Vaccines in opposition to HIV. Vaccines (Basel). 2018;6:10.

    Article 
    PubMed 

    Google Scholar
     

  • Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Main findings and up to date advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roldão A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine improvement. Knowledgeable Rev Vaccines. 2010;9:1149–76.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang H, Qian P, Liu L, Qian S, Chen H, Li X. Virus-like particles of chimeric recombinant porcine circovirus kind 2 as antigen car carrying international epitopes. Viruses. 2014;6:4839–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung BK, Kim HR, Jang H, Chang KS. Changing the decoy epitope of PCV2 capsid protein with epitopes of GP3 and/or GP5 of PRRSV enhances the immunogenicity of bivalent vaccines in mice. J Virol Strategies. 2020;284:113928.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Meng X, Wang S, Li Z, Yang L, Tu L, et al. Virus-like particles of recombinant PCV2b carrying FMDV-VP1 epitopes induce each anti-PCV and anti-FMDV antibody responses. Appl Microbiol Biotechnol. 2018;102:10541–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Liu Y, Zhang Y, Zhang F, Du E. Incorporation of a truncated type of flagellin (TFlg) into porcine circovirus kind 2 virus-like particles enhances immune responses in mice. BMC Vet Res. 2020;16:45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding P, Jin Q, Chen X, Yang S, Guo J, Xing G, et al. Nanovaccine confers Twin Safety in opposition to Influenza A Virus and Porcine Circovirus Kind 2. Int J Nanomedicine. 2019;14:7533–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee KW, Tey BT, Ho KL, Tan WS. Supply of chimeric hepatitis B core particles into liver cells. J Appl Microbiol. 2012;112:119–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peyret H, Ponndorf D, Meshcheriakova Y, Richardson J, Lomonossoff GP. Covalent protein show on Hepatitis B core-like particles in crops by means of the in vivo use of the SpyTag/SpyCatcher system. Sci Rep. 2020;10:17095.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruun TUJ, Andersson AC, Draper SJ, Howarth M. Engineering a rugged Nanoscaffold to Improve Plug-and-display vaccination. ACS Nano. 2018;12:8855–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peyret H, Gehin A, Thuenemann EC, Blond D, El Turabi A, Beales L, et al. Tandem fusion of hepatitis B core antigen permits meeting of virus-like particles in micro organism and crops with enhanced capability to accommodate international proteins. PLoS ONE. 2015;10:e0120751.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker A, Skamel C, Nassal M. SplitCore: an exceptionally versatile viral nanoparticle for native entire protein show no matter 3D construction. Sci Rep. 2011;1:5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heger-Stevic J, Kolb P, Walker A, Nassal M. Displaying whole-chain proteins on Hepatitis B Virus Capsid-Like particles. Strategies Mol Biol. 2018;1776:503–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanekiyo M, Joyce MG, Gillespie RA, Gallagher JR, Andrews SF, Yassine HM, et al. Mosaic nanoparticle show of numerous influenza virus hemagglutinins elicits broad B cell responses. Nat Immunol. 2019;20:362–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen AA, Gnanapragasam PNP, Lee YE, Hoffman PR, Ou S, Kakutani LM, et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science. 2021;371:735–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peacey M, Wilson S, Baird MA, Ward VK. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol Bioeng. 2007;98:968–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, et al. Peptide tag forming a speedy covalent bond to a protein, by means of engineering a bacterial adhesin. Proc Natl Acad Sci U S A. 2012;109:E690–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keeble AH, Banerjee A, Ferla MP, Reddington SC, Anuar I, Howarth M. Evolving accelerated amidation by SpyTag/SpyCatcher to research membrane Dynamics. Angew Chem Int Ed Engl. 2017;56:16521–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan TK, Rijal P, Rahikainen R, Keeble AH, Schimanski L, Hussain S, et al. A COVID-19 vaccine candidate utilizing SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding area induces potent neutralising antibody responses. Nat Commun. 2021;12:542.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang YF, Solar C, Zhuang Z, Yuan RY, Zheng Q, Li JP, et al. Fast Improvement of SARS-CoV-2 spike protein receptor-binding area self-assembled nanoparticle vaccine candidates. ACS Nano. 2021;15:2738–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji M, Zhu J, Xie XX, Liu DQ, Wang B, Yu Z, et al. A novel speedy modularized hepatitis B core virus-like particle-based platform for personalised most cancers vaccine preparation by way of fixed-point coupling. Nanomedicine. 2020;28:102223.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thrane S, Janitzek CM, Matondo S, Resende M, Gustavsson T, de Jongh WA, et al. Bacterial superglue permits simple improvement of environment friendly virus-like particle based mostly vaccines. J Nanobiotechnol. 2016;14:30.

    Article 

    Google Scholar
     

  • Kasaraneni N, Chamoun-Emanuelli AM, Wright G, Chen Z. Retargeting Lentiviruses by way of SpyCatcher-SpyTag Chemistry for Gene Supply into particular cell varieties. mBio. 2017;8:e01860.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuglsang A. Codon optimizer: a freeware instrument for codon optimization. Protein Expr Purif. 2003;31:247–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuan-Anh T, Ly LT, Viet NQ, Bao PT. Novel strategies to optimize gene and statistic check for analysis – an software for Escherichia coli. BMC Bioinformatics. 2017;18:100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, Wang Y, Han G, Fang W, He F. Identification of E2 with improved secretion and immunogenicity in opposition to CSFV in piglets. BMC Microbiol. 2020;20:26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, et al. Self-assembling Nanovaccine enhances protecting efficacy in opposition to CSFV in Pigs. Entrance Immunol. 2021;12:689187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, et al. A self-assembling nanoparticle: implications for the event of thermostable vaccine candidates. Int J Biol Macromol. 2021;183:2162–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamminen Ok, Heinimäki S, Vesikari T, Blazevic V. Rotavirus VP6 Adjuvant Impact on Norovirus GII.4 Virus-Like particle uptake and presentation by bone marrow-derived dendritic cells in Vitro and in vivo. J Immunol Res. 2020;2020:3194704.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arizmendi O, Kumar P, Zheng Q, Stewart JP, Selecting WD, Selecting W, et al. Vaccination with mouse dendritic cells loaded with an IpaD-IpaB Fusion gives Safety Towards Shigellosis. Entrance Immunol. 2019;10:192.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, Carano RA, et al. Mature dendritic cells use endocytic receptors to seize and current antigens. Proc Natl Acad Sci U S A. 2010;107:4287–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, et al. Nanoparticle vaccines based mostly on the receptor binding area (RBD) and Heptad repeat (HR) of SARS-CoV-2 Elicit Sturdy Protecting Immune responses. Immunity. 2020;53:1315–30.e1319.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Oosten L, Altenburg JJ, Fougeroux C, Geertsema C, van den Finish F, Evers WAC, et al. Two-component nanoparticle vaccine displaying glycosylated spike S1 area induces neutralizing antibody response in opposition to SARS-CoV-2 variants. mBio. 2021;12:e0181321.

    Article 
    PubMed 

    Google Scholar
     

  • Partitions AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell. 2020;183:1367–82.e1317.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yenkoidiok-Douti L, Williams AE, Canepa GE, Molina-Cruz A, Barillas-Mury C. Engineering a Virus-Like particle as an antigenic platform for a Pfs47-Focused Malaria Transmission-Blocking vaccine. Sci Rep. 2019;9:16833.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Liu Z, Li Y, Deng Z, Fang W, He F. The truncated type of flagellin (tFlic) gives the 2dCap subunit vaccine with higher immunogenicity and protecting results in mice. Anim Dis. 2022;2:11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu Y, Liu ZH, Li YX, Xu HL, Fang WH, He F. Focused supply of Nanovaccine to dendritic cells by way of DC-Binding peptides induces potent antiviral immunity in vivo. Int J Nanomedicine. 2022;17:1593–608.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hedman Ok, Seppälä I. Current rubella virus an infection indicated by a low avidity of particular IgG. J Clin Immunol. 1988;8:214–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Efficacy and security of RTS,S/AS01 malaria vaccine with or with out a booster dose in infants and youngsters in Africa: ultimate outcomes of a part 3, individually randomised, managed trial. Lancet. 2015;386:31–45. https://doi.org/10.1056/NEJMoa1208394.

  • Hu G, Wang N, Yu W, Wang Z, Zou Y, Zhang Y, et al. Technology and immunogenicity of porcine circovirus kind 2 chimeric virus-like particles displaying porcine reproductive and respiratory syndrome virus GP5 epitope B. Vaccine. 2016;34:1896–903.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang D, Zhang S, Zou Y, Yu W, Jiang Y, Zhan Y, et al. Construction-based design of Porcine Circovirus Kind 2 chimeric VLPs (cVLPs) shows international peptides on the Capsid Floor. Entrance Cell Infect Microbiol. 2018;8:232.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Wang X, Bai J, Ma T, Li Z, Li Y, et al. Building and immunogenicity of recombinant porcine circovirus-like particles displaying somatostatin. Vet Microbiol. 2013;163:23–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei X, Cai X, Yang Y. Genetic engineering methods for building of multivalent chimeric VLPs vaccines. Knowledgeable Rev Vaccines. 2020;19:235–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang T, Zhang X, Liu X, Ren L. Co-An infection of Swine with Porcine Circovirus kind 2 and different Swine viruses. Viruses. 2019;11:185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allan GM, McNeilly F, Ellis J, Krakowka S, Botner A, McCullough Ok, et al. PMWS: experimental mannequin and co-infections. Vet Microbiol. 2004;98:165–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niikura Ok, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, et al. Gold nanoparticles as a vaccine platform: affect of dimension and form on immunological responses in vitro and in vivo. ACS Nano. 2013;7:3926–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine supply programs: dimension issues. Aaps j. 2013;15:85–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brewer JM, Pollock KG, Tetley L, Russell DG. Vesicle dimension influences the trafficking, processing, and presentation of antigens in lipid vesicles. J Immunol. 2004;173:6143–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, et al. Dimension-dependent immunogenicity: therapeutic and protecting properties of nano-vaccines in opposition to tumors. J Immunol. 2004;173:3148–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol. 2021;19:59.

    Article 
    CAS 

    Google Scholar
     

  • Misinzo G, Meerts P, Bublot M, Mast J, Weingartl HM, Nauwynck HJ. Binding and entry traits of porcine circovirus 2 in cells of the porcine monocytic line 3D4/31. J Gen Virol. 2005;86:2057–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aoshi T. Modes of motion for mucosal vaccine adjuvants. Viral Immunol. 2017;30:463–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B, et al. Activation of c-Equipment in dendritic cells regulates T helper cell differentiation and allergic bronchial asthma. Nat Med. 2008;14:565–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Chen X, Jia J, Zhang W, Yang T, Wang L, et al. pH-Responsive poly(D,L-lactic-co-glycolic acid) nanoparticles with Fast Antigen Launch Conduct promote Immune Response. ACS Nano. 2015;9:4925–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halfmann PJ, Castro A, Loeffler Ok, Frey SJ, Chiba S, Kawaoka Y, et al. Potent neutralization of SARS-CoV-2 together with variants of concern by vaccines presenting the receptor-binding area multivalently from nanoscaffolds. Bioeng Transl Med. 2021;6:e10253.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chevillard C, Amen A, Besson S, Hannani D, Bally I, Dettling V, et al. Elicitation of potent SARS-CoV-2 neutralizing antibody responses by means of immunization with a flexible adenovirus-inspired multimerization platform. Mol Ther. 2022;30:1913–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salzer R, Clark JJ, Vaysburd M, Chang VT, Albecka A, Kiss L, et al. Single-dose immunisation with a multimerised SARS-CoV-2 receptor binding area (RBD) induces an enhanced and protecting response in mice. FEBS Lett. 2021;595:2323–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du G, Solar X. Engineering nanoparticulate vaccines for enhancing antigen cross-presentation. Curr Opin Biotechnol. 2020;66:113–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heyman B. Regulation of antibody responses by way of antibodies, complement, and fc receptors. Annu Rev Immunol. 2000;18:709–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao W, Fu T, He Z, Hu R, Jia L, Hong Y. Analysis of Immunostimulatory results of N-(2-Hydroxy) Propyl-3-Trimethylammonium Chitosan Chloride for bettering reside attenuated Hepatitis A Virus Vaccine Efficacy. Viral Immunol. 2017;30:120–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohr E, Cunningham AF, Toellner KM, Bobat S, Coughlan RE, Fowl RA, et al. IFN-{gamma} produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine. Proc Natl Acad Sci U S A. 2010;107:17292–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass exercise by means of selective fc receptor binding. Science. 2005;310:1510–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Legislation JC, Girard M, Chao GYC, Ward LA, Isho B, Rathod B, et al. Persistence of T cell and antibody responses to SARS-CoV-2 as much as 9 months after Symptom Onset. J Immunol. 2022;208:429–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keijzer C, Haijema BJ, Meijerhof T, Voorn P, de Haan A, Leenhouts Ok, et al. Inactivated influenza vaccine adjuvanted with bacterium-like particles induce systemic and mucosal influenza a virus particular T-cell and B-cell responses after nasal administration in a TLR2 dependent vogue. Vaccine. 2014;32:2904–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham SP, Haines FJ, Johns HL, Sosan O, La Rocca SA, Lamp B, et al. Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with speedy safety in opposition to classical swine fever virus. Vaccine. 2012;30:2742–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu PC, Lin WL, Wu CM, Chi JN, Chien MS, Huang C. Characterization of porcine circovirus kind 2 (PCV2) capsid particle meeting and its software to virus-like particle vaccine improvement. Appl Microbiol Biotechnol. 2012;95:1501–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng XJ. Porcine circovirus kind 2 (PCV2): pathogenesis and interplay with the immune system. Annu Rev Anim Biosci. 2013;1:43–64.

    Article 
    PubMed 

    Google Scholar
     

  • Afghah Z, Webb B, Meng XJ, Ramamoorthy S. Ten years of PCV2 vaccines and vaccination: is eradication a risk? Vet Microbiol. 2017;206:21–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trible BR, Ramirez A, Suddith A, Fuller A, Kerrigan M, Hesse R, et al. Antibody responses following vaccination versus an infection in a porcine circovirus-type 2 (PCV2) illness mannequin present distinct variations in virus neutralization and epitope recognition. Vaccine. 2012;30:4079–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Supply hyperlink

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    - Advertisment -
    Google search engine

    Most Popular

    Recent Comments