Lager KM, Buckley AC. Porcine anti-viral immunity: how necessary is it? Entrance Immunol. 2019;10:2258.
Dhakal S, Renukaradhya GJ. Nanoparticle-based vaccine improvement and analysis in opposition to viral infections in pigs. Vet Res. 2019;50:90.
Du T, Nan Y, Xiao S, Zhao Q, Zhou EM. Antiviral methods in opposition to PRRSV an infection. Traits Microbiol. 2017;25:968–79.
Saade G, Deblanc C, Bougon J, Marois-Créhan C, Fablet C, Auray G, et al. Coinfections and their molecular penalties within the porcine respiratory tract. Vet Res. 2020;51:80.
Zhang W, Fu Z, Yin H, Han Q, Fan W, Wang F, et al. Macrophage polarization modulated by Porcine Circovirus Kind 2 facilitates bacterial coinfection. Entrance Immunol. 2021;12:688294.
Blome S, Moß C, Reimann I, König P, Beer M. Classical swine fever vaccines-state-of-the-art. Vet Microbiol. 2017;206:10–20.
Luo Y, Li S, Solar Y, Qiu HJ. Classical swine fever in China: a minireview. Vet Microbiol. 2014;172:1–6.
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interplay between Virus-Like particles (VLPs) and sample recognition receptors (PRRs) from dendritic cells (DCs): towards Higher Engineering of VLPs. Entrance Immunol. 2020;11:1100.
Tao P, Zhu J, Mahalingam M, Batra H, Rao VB. Bacteriophage T4 nanoparticles for vaccine supply in opposition to infectious illnesses. Adv Drug Deliv Rev. 2019;145:57–72.
Hills RA, Howarth M. Virus-like particles in opposition to infectious illness and most cancers: steerage for the nano-architect. Curr Opin Biotechnol. 2022;73:346–54.
Andersson AC, Schwerdtfeger M, Holst PJ. Virus-Like-Vaccines in opposition to HIV. Vaccines (Basel). 2018;6:10.
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Main findings and up to date advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–32.
Roldão A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine improvement. Knowledgeable Rev Vaccines. 2010;9:1149–76.
Zhang H, Qian P, Liu L, Qian S, Chen H, Li X. Virus-like particles of chimeric recombinant porcine circovirus kind 2 as antigen car carrying international epitopes. Viruses. 2014;6:4839–55.
Jung BK, Kim HR, Jang H, Chang KS. Changing the decoy epitope of PCV2 capsid protein with epitopes of GP3 and/or GP5 of PRRSV enhances the immunogenicity of bivalent vaccines in mice. J Virol Strategies. 2020;284:113928.
Li X, Meng X, Wang S, Li Z, Yang L, Tu L, et al. Virus-like particles of recombinant PCV2b carrying FMDV-VP1 epitopes induce each anti-PCV and anti-FMDV antibody responses. Appl Microbiol Biotechnol. 2018;102:10541–50.
Liu X, Liu Y, Zhang Y, Zhang F, Du E. Incorporation of a truncated type of flagellin (TFlg) into porcine circovirus kind 2 virus-like particles enhances immune responses in mice. BMC Vet Res. 2020;16:45.
Ding P, Jin Q, Chen X, Yang S, Guo J, Xing G, et al. Nanovaccine confers Twin Safety in opposition to Influenza A Virus and Porcine Circovirus Kind 2. Int J Nanomedicine. 2019;14:7533–48.
Lee KW, Tey BT, Ho KL, Tan WS. Supply of chimeric hepatitis B core particles into liver cells. J Appl Microbiol. 2012;112:119–31.
Peyret H, Ponndorf D, Meshcheriakova Y, Richardson J, Lomonossoff GP. Covalent protein show on Hepatitis B core-like particles in crops by means of the in vivo use of the SpyTag/SpyCatcher system. Sci Rep. 2020;10:17095.
Bruun TUJ, Andersson AC, Draper SJ, Howarth M. Engineering a rugged Nanoscaffold to Improve Plug-and-display vaccination. ACS Nano. 2018;12:8855–66.
Peyret H, Gehin A, Thuenemann EC, Blond D, El Turabi A, Beales L, et al. Tandem fusion of hepatitis B core antigen permits meeting of virus-like particles in micro organism and crops with enhanced capability to accommodate international proteins. PLoS ONE. 2015;10:e0120751.
Walker A, Skamel C, Nassal M. SplitCore: an exceptionally versatile viral nanoparticle for native entire protein show no matter 3D construction. Sci Rep. 2011;1:5.
Heger-Stevic J, Kolb P, Walker A, Nassal M. Displaying whole-chain proteins on Hepatitis B Virus Capsid-Like particles. Strategies Mol Biol. 2018;1776:503–31.
Kanekiyo M, Joyce MG, Gillespie RA, Gallagher JR, Andrews SF, Yassine HM, et al. Mosaic nanoparticle show of numerous influenza virus hemagglutinins elicits broad B cell responses. Nat Immunol. 2019;20:362–72.
Cohen AA, Gnanapragasam PNP, Lee YE, Hoffman PR, Ou S, Kakutani LM, et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science. 2021;371:735–41.
Peacey M, Wilson S, Baird MA, Ward VK. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation. Biotechnol Bioeng. 2007;98:968–77.
Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, et al. Peptide tag forming a speedy covalent bond to a protein, by means of engineering a bacterial adhesin. Proc Natl Acad Sci U S A. 2012;109:E690–7.
Keeble AH, Banerjee A, Ferla MP, Reddington SC, Anuar I, Howarth M. Evolving accelerated amidation by SpyTag/SpyCatcher to research membrane Dynamics. Angew Chem Int Ed Engl. 2017;56:16521–5.
Tan TK, Rijal P, Rahikainen R, Keeble AH, Schimanski L, Hussain S, et al. A COVID-19 vaccine candidate utilizing SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding area induces potent neutralising antibody responses. Nat Commun. 2021;12:542.
Kang YF, Solar C, Zhuang Z, Yuan RY, Zheng Q, Li JP, et al. Fast Improvement of SARS-CoV-2 spike protein receptor-binding area self-assembled nanoparticle vaccine candidates. ACS Nano. 2021;15:2738–52.
Ji M, Zhu J, Xie XX, Liu DQ, Wang B, Yu Z, et al. A novel speedy modularized hepatitis B core virus-like particle-based platform for personalised most cancers vaccine preparation by way of fixed-point coupling. Nanomedicine. 2020;28:102223.
Thrane S, Janitzek CM, Matondo S, Resende M, Gustavsson T, de Jongh WA, et al. Bacterial superglue permits simple improvement of environment friendly virus-like particle based mostly vaccines. J Nanobiotechnol. 2016;14:30.
Kasaraneni N, Chamoun-Emanuelli AM, Wright G, Chen Z. Retargeting Lentiviruses by way of SpyCatcher-SpyTag Chemistry for Gene Supply into particular cell varieties. mBio. 2017;8:e01860.
Fuglsang A. Codon optimizer: a freeware instrument for codon optimization. Protein Expr Purif. 2003;31:247–9.
Tuan-Anh T, Ly LT, Viet NQ, Bao PT. Novel strategies to optimize gene and statistic check for analysis – an software for Escherichia coli. BMC Bioinformatics. 2017;18:100.
Xu H, Wang Y, Han G, Fang W, He F. Identification of E2 with improved secretion and immunogenicity in opposition to CSFV in piglets. BMC Microbiol. 2020;20:26.
Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, et al. Self-assembling Nanovaccine enhances protecting efficacy in opposition to CSFV in Pigs. Entrance Immunol. 2021;12:689187.
Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, et al. A self-assembling nanoparticle: implications for the event of thermostable vaccine candidates. Int J Biol Macromol. 2021;183:2162–73.
Tamminen Ok, Heinimäki S, Vesikari T, Blazevic V. Rotavirus VP6 Adjuvant Impact on Norovirus GII.4 Virus-Like particle uptake and presentation by bone marrow-derived dendritic cells in Vitro and in vivo. J Immunol Res. 2020;2020:3194704.
Arizmendi O, Kumar P, Zheng Q, Stewart JP, Selecting WD, Selecting W, et al. Vaccination with mouse dendritic cells loaded with an IpaD-IpaB Fusion gives Safety Towards Shigellosis. Entrance Immunol. 2019;10:192.
Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, Carano RA, et al. Mature dendritic cells use endocytic receptors to seize and current antigens. Proc Natl Acad Sci U S A. 2010;107:4287–92.
Ma X, Zou F, Yu F, Li R, Yuan Y, Zhang Y, et al. Nanoparticle vaccines based mostly on the receptor binding area (RBD) and Heptad repeat (HR) of SARS-CoV-2 Elicit Sturdy Protecting Immune responses. Immunity. 2020;53:1315–30.e1319.
van Oosten L, Altenburg JJ, Fougeroux C, Geertsema C, van den Finish F, Evers WAC, et al. Two-component nanoparticle vaccine displaying glycosylated spike S1 area induces neutralizing antibody response in opposition to SARS-CoV-2 variants. mBio. 2021;12:e0181321.
Partitions AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell. 2020;183:1367–82.e1317.
Yenkoidiok-Douti L, Williams AE, Canepa GE, Molina-Cruz A, Barillas-Mury C. Engineering a Virus-Like particle as an antigenic platform for a Pfs47-Focused Malaria Transmission-Blocking vaccine. Sci Rep. 2019;9:16833.
Lu Y, Liu Z, Li Y, Deng Z, Fang W, He F. The truncated type of flagellin (tFlic) gives the 2dCap subunit vaccine with higher immunogenicity and protecting results in mice. Anim Dis. 2022;2:11.
Lu Y, Liu ZH, Li YX, Xu HL, Fang WH, He F. Focused supply of Nanovaccine to dendritic cells by way of DC-Binding peptides induces potent antiviral immunity in vivo. Int J Nanomedicine. 2022;17:1593–608.
Hedman Ok, Seppälä I. Current rubella virus an infection indicated by a low avidity of particular IgG. J Clin Immunol. 1988;8:214–21.
Efficacy and security of RTS,S/AS01 malaria vaccine with or with out a booster dose in infants and youngsters in Africa: ultimate outcomes of a part 3, individually randomised, managed trial. Lancet. 2015;386:31–45. https://doi.org/10.1056/NEJMoa1208394.
Hu G, Wang N, Yu W, Wang Z, Zou Y, Zhang Y, et al. Technology and immunogenicity of porcine circovirus kind 2 chimeric virus-like particles displaying porcine reproductive and respiratory syndrome virus GP5 epitope B. Vaccine. 2016;34:1896–903.
Wang D, Zhang S, Zou Y, Yu W, Jiang Y, Zhan Y, et al. Construction-based design of Porcine Circovirus Kind 2 chimeric VLPs (cVLPs) shows international peptides on the Capsid Floor. Entrance Cell Infect Microbiol. 2018;8:232.
Li W, Wang X, Bai J, Ma T, Li Z, Li Y, et al. Building and immunogenicity of recombinant porcine circovirus-like particles displaying somatostatin. Vet Microbiol. 2013;163:23–32.
Lei X, Cai X, Yang Y. Genetic engineering methods for building of multivalent chimeric VLPs vaccines. Knowledgeable Rev Vaccines. 2020;19:235–46.
Ouyang T, Zhang X, Liu X, Ren L. Co-An infection of Swine with Porcine Circovirus kind 2 and different Swine viruses. Viruses. 2019;11:185.
Allan GM, McNeilly F, Ellis J, Krakowka S, Botner A, McCullough Ok, et al. PMWS: experimental mannequin and co-infections. Vet Microbiol. 2004;98:165–8.
Niikura Ok, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, et al. Gold nanoparticles as a vaccine platform: affect of dimension and form on immunological responses in vitro and in vivo. ACS Nano. 2013;7:3926–38.
Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine supply programs: dimension issues. Aaps j. 2013;15:85–94.
Brewer JM, Pollock KG, Tetley L, Russell DG. Vesicle dimension influences the trafficking, processing, and presentation of antigens in lipid vesicles. J Immunol. 2004;173:6143–50.
Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, et al. Dimension-dependent immunogenicity: therapeutic and protecting properties of nano-vaccines in opposition to tumors. J Immunol. 2004;173:3148–54.
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol. 2021;19:59.
Misinzo G, Meerts P, Bublot M, Mast J, Weingartl HM, Nauwynck HJ. Binding and entry traits of porcine circovirus 2 in cells of the porcine monocytic line 3D4/31. J Gen Virol. 2005;86:2057–68.
Aoshi T. Modes of motion for mucosal vaccine adjuvants. Viral Immunol. 2017;30:463–70.
Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B, et al. Activation of c-Equipment in dendritic cells regulates T helper cell differentiation and allergic bronchial asthma. Nat Med. 2008;14:565–73.
Liu Q, Chen X, Jia J, Zhang W, Yang T, Wang L, et al. pH-Responsive poly(D,L-lactic-co-glycolic acid) nanoparticles with Fast Antigen Launch Conduct promote Immune Response. ACS Nano. 2015;9:4925–38.
Halfmann PJ, Castro A, Loeffler Ok, Frey SJ, Chiba S, Kawaoka Y, et al. Potent neutralization of SARS-CoV-2 together with variants of concern by vaccines presenting the receptor-binding area multivalently from nanoscaffolds. Bioeng Transl Med. 2021;6:e10253.
Chevillard C, Amen A, Besson S, Hannani D, Bally I, Dettling V, et al. Elicitation of potent SARS-CoV-2 neutralizing antibody responses by means of immunization with a flexible adenovirus-inspired multimerization platform. Mol Ther. 2022;30:1913–25.
Salzer R, Clark JJ, Vaysburd M, Chang VT, Albecka A, Kiss L, et al. Single-dose immunisation with a multimerised SARS-CoV-2 receptor binding area (RBD) induces an enhanced and protecting response in mice. FEBS Lett. 2021;595:2323–40.
Du G, Solar X. Engineering nanoparticulate vaccines for enhancing antigen cross-presentation. Curr Opin Biotechnol. 2020;66:113–22.
Heyman B. Regulation of antibody responses by way of antibodies, complement, and fc receptors. Annu Rev Immunol. 2000;18:709–37.
Tao W, Fu T, He Z, Hu R, Jia L, Hong Y. Analysis of Immunostimulatory results of N-(2-Hydroxy) Propyl-3-Trimethylammonium Chitosan Chloride for bettering reside attenuated Hepatitis A Virus Vaccine Efficacy. Viral Immunol. 2017;30:120–6.
Mohr E, Cunningham AF, Toellner KM, Bobat S, Coughlan RE, Fowl RA, et al. IFN-{gamma} produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine. Proc Natl Acad Sci U S A. 2010;107:17292–7.
Nimmerjahn F, Ravetch JV. Divergent immunoglobulin g subclass exercise by means of selective fc receptor binding. Science. 2005;310:1510–2.
Legislation JC, Girard M, Chao GYC, Ward LA, Isho B, Rathod B, et al. Persistence of T cell and antibody responses to SARS-CoV-2 as much as 9 months after Symptom Onset. J Immunol. 2022;208:429–43.
Keijzer C, Haijema BJ, Meijerhof T, Voorn P, de Haan A, Leenhouts Ok, et al. Inactivated influenza vaccine adjuvanted with bacterium-like particles induce systemic and mucosal influenza a virus particular T-cell and B-cell responses after nasal administration in a TLR2 dependent vogue. Vaccine. 2014;32:2904–10.
Graham SP, Haines FJ, Johns HL, Sosan O, La Rocca SA, Lamp B, et al. Characterisation of vaccine-induced, broadly cross-reactive IFN-γ secreting T cell responses that correlate with speedy safety in opposition to classical swine fever virus. Vaccine. 2012;30:2742–8.
Wu PC, Lin WL, Wu CM, Chi JN, Chien MS, Huang C. Characterization of porcine circovirus kind 2 (PCV2) capsid particle meeting and its software to virus-like particle vaccine improvement. Appl Microbiol Biotechnol. 2012;95:1501–7.
Meng XJ. Porcine circovirus kind 2 (PCV2): pathogenesis and interplay with the immune system. Annu Rev Anim Biosci. 2013;1:43–64.
Afghah Z, Webb B, Meng XJ, Ramamoorthy S. Ten years of PCV2 vaccines and vaccination: is eradication a risk? Vet Microbiol. 2017;206:21–8.
Trible BR, Ramirez A, Suddith A, Fuller A, Kerrigan M, Hesse R, et al. Antibody responses following vaccination versus an infection in a porcine circovirus-type 2 (PCV2) illness mannequin present distinct variations in virus neutralization and epitope recognition. Vaccine. 2012;30:4079–85.