Sadtler, P. T. et al. Neural constraints on studying. Nature 512, 423–426 (2014).
Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Lengthy-term stability of cortical inhabitants dynamics underlying constant habits. Nat. Neurosci. 23, 260–270 (2020).
Perlmutter, J. S. & Mink, J. W. Deep mind stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006).
Patel, S. R. & Lieber, C. M. Precision digital medication within the mind. Nat. Biotechnol. 37, 1007–1012 (2019).
Adolphs, R. The unsolved issues of neuroscience. Traits Cogn. Sci. 19, 173–175 (2015).
Musk, E. An built-in mind–machine interface platform with hundreds of channels. J. Med. Web Res. 21, e16194 (2019).
Lacour, S. P., Courtine, G. & Guck, J. Supplies and applied sciences for tender implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).
Jun, J. J. et al. Totally built-in silicon probes for high-density recording of neural exercise. Nature 551, 232–236 (2017).
Tooker, A. et al. Optimization of multi-layer metallic neural probe design. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 5995–5998 (2012).
Salatino, J. W., Ludwig, Okay. A., Kozai, T. D. Y. & Purcell, E. Okay. Glial responses to implanted electrodes within the mind. Nat. Biomed. Eng. 1, 862–877 (2017).
Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).
Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).
Chung, J. E. et al. Excessive-density, long-lasting, and multi-region electrophysiological recordings utilizing polymer electrode arrays. Neuron 101, 21–31 (2019).
Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).
Khodagholy, D. et al. NeuroGrid: recording motion potentials from the floor of the mind. Nat. Neurosci. 18, 310–315 (2015).
Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive mind probes. Nat. Mater. 14, 1286–1292 (2015).
Luan, L. et al. Ultraflexible nanoelectronic probes kind dependable, glial scar-free neural integration. Sci. Adv. 3, e1601966 (2017).
Fu, T. M. et al. Secure long-term persistent mind mapping on the single-neuron stage. Nat. Strategies 13, 875–882 (2016).
Dalvi, V. H. & Rossky, P. J. Molecular origins of fluorocarbon hydrophobicity. Proc. Natl Acad. Sci. USA 107, 13603–13607 (2010).
Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable ‘liquid Teflon’ for microfluidic gadget fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).
Liao, S., He, Y., Chu, Y., Liao, H. & Wang, Y. Solvent-resistant and absolutely recyclable perfluoropolyether-based elastomer for microfluidic chip fabrication. J. Mater. Chem. A 7, 16249–16256 (2019).
Liu, J. et al. Totally stretchable active-matrix natural light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).
Liu, Y. et al. Comfortable and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).
Qiang, Y. et al. Crosstalk in polymer microelectrode arrays. Nano Res. 14, 3240–3247 (2021).
Fang, H. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid limitations for biointegrated versatile digital methods. Proc. Natl Acad. Sci. USA 113, 11682–11687 (2016).
Grancarić, A. M. et al. Conductive polymers for sensible textile purposes. J. Ind. Textual content. 48, 612–642 (2018).
Shoa, T., Mirfakhrai, T. & Madden, J. D. Electro-stiffening in polypyrrole movies: dependence of Younger’s modulus on oxidation state, load and frequency. Synth. Met. 160, 1280–1286 (2010).
Kim, Y. H. et al. Extremely conductive PEDOT:PSS electrode with optimized solvent and thermal put up‐therapy for ITO‐free natural photo voltaic cells. Adv. Funct. Mater. 21, 1076–1081 (2011).
Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).
Minisy, I. M., Bober, P., Šeděnková, I. & Stejskal, J. Methyl purple dye within the tuning of polypyrrole conductivity. Polymer 207, 122854 (2020).
Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).
Sekitani, T. et al. A rubberlike stretchable lively matrix utilizing elastic conductors. Science 321, 1468–1472 (2008).
Qu, J., Ouyang, L., Kuo, C.-C. & Martin, D. C. Stiffness, power and adhesion characterization of electrochemically deposited conjugated polymer movies. Acta Biomater. 31, 114–121 (2016).
Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Supplies and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).
Tringides, C. M. et al. Viscoelastic floor electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).
Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).
Le Floch, P. et al. Elementary limits to the electrochemical impedance stability of dielectric elastomers in bioelectronics. Nano Lett. 20, 224–233 (2020).
Music, E., Li, J., Gained, S. M., Bai, W. & Rogers, J. A. Supplies for versatile bioelectronic methods as persistent neural interfaces. Nat. Mater. 19, 590–603 (2020).
Le Floch, P., Meixuanzi, S., Tang, J., Liu, J. & Suo, Z. Stretchable seal. ACS Appl. Mater. Interfaces 10, 27333–27343 (2018).
Le Floch, P. et al. Wearable and washable conductors for lively textiles. ACS Appl. Mater. Interfaces 9, 25542–25552 (2017).
Bard, A. J. & Faulkner, L. R. Electrochemical Strategies: Fundamentals and Softwares (Wiley, 2000).
Olson, Okay. R. et al. Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery purposes. Polymer 100, 126–133 (2016).
Timachova, Okay. et al. Mechanism of ion transport in perfluoropolyether electrolytes with a lithium salt. Comfortable Matter 13, 5389–5396 (2017).
Barrer, R. Permeability of natural polymers. J. Chem. Soc. Faraday Trans. 35, 644–648 (1940).
Van Amerongen, G. Affect of construction of elastomers on their permeability to gases. J. Polym. Sci. 5, 307–332 (1950).
Geise, G. M., Paul, D. R. & Freeman, B. D. Elementary water and salt transport properties of polymeric supplies. Prog. Polym. Sci. 39, 1–42 (2014).
George, S. C., Knörgen, M. & Thomas, S. Impact of nature and extent of crosslinking on swelling and mechanical habits of styrene–butadiene rubber membranes. J. Membr. Sci. 163, 1–17 (1999).
Vitale, A. et al. Direct photolithography of perfluoropolyethers for solvent-resistant microfluidics. Langmuir 29, 15711–15718 (2013).
Gent, A. N. Fracture mechanics of adhesive bonds. Rubber Chem. Technol. 47, 202–212 (1974).
Wang, Y., Yin, T. & Suo, Z. Polyacrylamide hydrogels. III. Lap shear and peel. J. Mech. Phys. Solids 150, 104348 (2021).
Lacour, S. P., Jones, J., Wagner, S., Teng, L. & Zhigang, S. Stretchable interconnects for elastic digital surfaces. Proc. IEEE 93, 1459–1467 (2005).
Li, T., Huang, Z., Suo, Z., Lacour, S. P. & Wagner, S. Stretchability of skinny metallic movies on elastomer substrates. Appl. Phys. Lett. 85, 3435–3437 (2004).
Li, T., Suo, Z., Lacour, S. P. & Wagner, S. Compliant skinny movie patterns of stiff supplies as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005).
Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).
Minev, I. R. et al. Digital dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).
Vachicouras, N. et al. Microstructured thin-film electrode expertise permits proof of idea of scalable, tender auditory brainstem implants. Sci. Transl. Med. 11, eaax9487 (2019).
Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for steady, long-term mind recordings. Science 372, eabf4588 (2021).
Guan, S. et al. Elastocapillary self-assembled neurotassels for steady neural exercise recordings. Sci. Adv. 5, eaav2842 (2019).
Cea, C. et al. Enhancement-mode ion-based transistor as a complete interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).
Lu, Chi et al. Versatile and stretchable nanowire-coated fibers for optoelectronic probing of spinal twine circuits. Sci. Adv. 3, e1600955 (2017).
Li, L. et al. Built-in versatile chalcogenide glass photonic gadgets. Nat. Photon. 8, 643–649 (2014).
Li, S., Su, Y. & Li, R. Splitting of the impartial mechanical aircraft depends upon the size of the multi-layer construction of versatile electronics. Proc. R. Soc. A 472, 20160087 (2016).
Kim, M.-G., Brown, D. Okay. & Model, O. Nanofabrication for all-soft and high-density digital gadgets based mostly on liquid metallic. Nat. Commun. 11, 1002 (2020).
Morin, F., Chabanas, M., Courtecuisse, H. & Payan, Y. in Biomechanics of Dwelling Organs: Hyperelastic Constitutive Legal guidelines for Finite Ingredient Modeling (eds Payan, Y. & Ohayon, J.) 127–146 (Elsevier, 2017).
Stalder, A. F., Kulik, G., Sage, D., Barbieri, L. & Hoffmann, P. A snake-based strategy to correct dedication of each contact factors and speak to angles. Colloids Surf. A 286, 92–103 (2006).
Zhao, S. et al. Graphene encapsulated copper microwires as extremely MRI suitable neural electrodes. Nano Lett. 16, 7731–7738 (2016).
Schrödinger Launch 2021-2: Maestro (Schrödinger Inc., 2021).
More durable, E. et al. OPLS3: a pressure subject offering broad protection of drug-like small molecules and proteins. J. Chem. Concept Comput. 12, 281–296 (2016).
Bowers, Okay. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC ’06: Proc. 2006 ACM/IEEE Convention on Supercomputing 43 (IEEE, 2006).